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Inhomogeneous model colloid-polymer mixtures: Adsorption at a hard wall
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We study the equilibrium properties of inhomogeneous model colloid-polymer mixtures. By integrating out
the degrees of freedom of the ideal polymer coils, we derive a formal expression for the effective one-
component Hamiltonian of the~hard sphere! colloids that is valid for arbitrary external potentials acting on
both the colloids and the polymers. We show how one can recover information about the distribution of
polymer in the mixture given knowledge of the colloid correlation functions calculated using the effective
one-component Hamiltonian. This result is then used to furnish the connection between the free-volume and
perturbation theory approaches to determining the bulk phase equilibria. For the special case of a planar hard
wall the effective Hamiltonian takes an explicit form, consisting of zero-, one-, and two-body, but no higher-
body, contributions provided the size ratioq5sp /sc,0.1547, wheresc and sp denote the diameters of
colloid and polymer respectively. We employ a simple density functional theory to calculate colloid density
profiles from this effective Hamiltonian forq50.1. The resulting profiles are found to agree well with those
from Monte Carlo simulations for the same Hamiltonian. Adding very small amounts of polymer gives rise to
strong depletion effects at the hard wall which lead to pronounced enhancement of the colloid density profile
~close to the wall! over what is found for hard spheres at a hard wall.
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I. INTRODUCTION

The addition of nonadsorbing polymers to a colloidal s
pension gives rise to an attractive interaction between
colloidal particles. The physical mechanism for this pheno
enon is the depletion effect whereby an effective attrac
interaction is induced between the colloids due to the ex
sion of polymer from a depletion zone between these;
range of the interaction is set by the diameter of the polym
coils and the strength of the attraction determined by
chemical potential of the polymer reservoir@1#. A popular
simple model of the binary colloid-polymer mixture trea
the colloids as hard spheres, with diametersc , and the poly-
mers as ideal interpenetrating coils as regards their mu
interactions but which are excluded by a center of mass
tance (sc1sp)/2 from the colloids@1,2#. It was shown pre-
viously @3# that, for such a homogeneous colloid-polym
mixture, explicitly integrating out the degrees of freedom
the polymer gives rise to an effective Hamiltonian for t
colloids consisting of zero-, one-, two-, and higher-bo
terms. Use of this effective Hamiltonian has provided mu
insight into the phase equilibria@3–5# and structure@3,6,7# in
bulk colloid-polymer mixtures. Surprisingly little attentio
has been paid toinhomogeneouscolloid-polymer mixtures
where the average density profiles of both species are
tially varying. Such situations arise in adsorption at a so
substrate, in mixtures confined in narrow pores, at the pla
interface between two coexisting~colloid-rich and polymer-
rich! fluid phases@8–10#, and in colloidal crystals. In thes
situations it is not evident that the mapping from an inhom
geneous binary mixture to an inhomogeneous effective o
component fluid~of colloids! is tractable, i.e., will lead to an
effective Hamiltonian that is sufficiently simple to employ
simulations or tackle by standard liquid state theories. Re
that direct simulation of the model binary mixture, whic
1063-651X/2001/63~4!/041405~13!/$20.00 63 0414
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constitutes a very asymmetric, nonadditive system, is pro
ited by slow equilibration, since huge numbers of polym
molecules are required per colloid particle at state points
interest. In this paper, we show that the integrating out p
cedure can be carried through for an inhomogeneous coll
polymer mixture, subject to external potentials that bre
translational invariance. The presence of external poten
gives rise to terms in the effective Hamiltonian represent
additional depletion effects, which have important con
quences for the application of effective Hamiltonians to
homogeneous problems, in particular, to the study of ads
tion, confined fluids, and fluid interfaces. For high
asymmetric mixtures, with size ratioq[sp /sc,0.1547,
near a planar hard wall the effective Hamiltonian reduces
a particularly simple form consisting of zero-, one-, and tw
body contributions but no higher-body terms. It is identic
to the Hamiltonian derived for the bulk system@3# apart from
an additional, attractive one-body term arising from dep
tion of polymer at the hard wall. We employ this effectiv
Hamiltonian in an approximate density functional treatme
~DFT! and in a Monte Carlo simulation study of the dens
profile of colloids at a hard wall in mixtures with size rat
q50.1. To the best of our knowledge this is the first inve
tigation of the effects of depletion on colloid adsorption
such a model mixture.

Once the degrees of freedom of the polymer coils ha
been integrated out, it might seem as though informat
about the distribution of polymer has been lost. Howev
given knowledge of the colloid correlation functions o
tained from the effective Hamiltonian, a formally exact e
pression for the density profile of the polymers can be
rived. This can be usefully employed for the calculation
both homogeneous~the polymer concentration in the bul
mixture! and inhomogeneous~interfacial! profiles.

The paper is organized as follows. In Sec. II we descr
©2001 The American Physical Society05-1



o
th
li
w
th
it
o

tio
-
e
tio
le
el
t
o
a

ro

pe
th
ol
d
nd
or

e
d,
tin

in
a
s
-
t

, a
h
te

id

r
er

ss

l,
-
l

ral
he

gy
is

es-
the
ol-

-
of

eal
nal
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the model and show how the polymer degrees of freed
can be integrated out to yield an effective Hamiltonian in
presence of arbitrary external potentials. We then specia
to the case where the external potentials represent a hard
and show that explicit expressions can be derived for
various terms in the Hamiltonian. In Sec. III we show how
is possible to recover information about the distribution
the polymer and use the formalism to furnish the connec
between the free-volume@5# and perturbation/integral
equation theories@3,4# of the free-volume fraction and th
phase equilibria, which has hitherto been lacking. Sec
IV A discusses sum rules for the colloid and polymer profi
at contact with a hard wall; these are generalizations of w
known sum rules for simple~atomic! fluids to the presen
effective Hamiltonian. Section IV B describes the results
our DFT calculations and simulation studies. We find th
the two approaches lead to very similar colloid density p
files. Adding only small amounts of polymer~to the reser-
voir! leads to dramatic changes in the colloid profile, es
cially close to the hard wall where depletion increases
contact value to many times its value in the absence of p
mer, i.e., the value appropriate to a pure hard sphere flui
a hard wall. We conclude in Sec. V with a summary a
discussion of the possible relevance of our results for ads
tion phenomena in real colloidal systems.

II. THE EFFECTIVE HAMILTONIAN FOR AN
INHOMOGENEOUS COLLOID-POLYMER MIXTURE

We consider an extreme nonadditive binary hard sph
mixture consisting ofNc hard spheres, representing colloi
andNp interpenetrable, noninteracting particles, represen
ideal polymer in a volumeV at temperatureT. This provides
a reasonable model of a colloid-polymer mixture as the
teraction between sterically stabilized colloidal particles c
be made close to that of hard spheres, and dilute solution
polymer in au solvent are very weakly interacting. We im
plicitly assume that any solvent molecules that are presen
a real suspension can be treated as an inert continuum
thus have no effect on bulk or interfacial properties. T
colloids interact via the hard sphere potential with a diame
sc and the polymer particles are excluded from the collo
to a center of mass distance of (sc1sp)/2, where the diam-
etersp52Rg , with Rg the radius of gyration of the polyme
coils. This simple model of an idealized colloid-polym
mixture is often called the Asakura-Oosawa~AO! model@1#
although it was first defined explicitly by Vrij@2#. It is speci-
fied by the pair potentials

fcc~Ri j !5H ` for Ri j ,sc

0 otherwise,

fcp~ uRi2r j u!5H ` for uRi2r j u,
1
2 ~sc1sp!

0 otherwise,

fpp~r i j !50, ~1!

whereR and r denote colloid and polymer center of ma
coordinates, respectively, withRi j 5uRi2Rj u and r i j
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5ur i2r j u. The Hamiltonian thus consists of~trivial! kinetic
energy contributions and a sum of interaction termsH
5Hcc1Hcp1Hpp , where

Hcc5(
i , j

Nc

fcc~Ri j !,

Hcp5(
i

Nc

(
j

Np

fcp~ uRi2r j u!, ~2!

Hpp5(
i , j

Np

fpp~r i j !50.

Following Ref. @3# we work in a semi-grand-canonica
(Nc ,zp ,V,T), ensemble in which the fugacity of the poly
mers,zp5Lp

23 exp(bmp), is fixed, mp denotes the chemica
potential of the reservoir of polymer, andb51/kBT. Here, in
addition to the pairwise interactions we add two, in gene
different, external fields which couple independently to t
colloid and polymer degrees of freedom:

Vc
ext5(

i

Nc

vc
ext~Ri !, Vp

ext5(
i

Np

vp
ext~r i !. ~3!

The quantity of interest is the Helmholtz free ener
F(Nc ,V,zp), which in the semi-grand-canonical ensemble
given by

exp@2bF#5 (
Np50

` zp
Np

Np!Nc!Lc
3Nc E drNp

3exp@2b~Hcc1Hcp1Vc
ext1Vp

ext!#, ~4!

whereLn is the thermal de Broglie wavelength of speciesn
and we have used the fact thatHpp50. In order to integrate
out the degrees of freedom of the polymer coils, this expr
sion must first be rewritten in a form that resembles
Helmholtz free energy of a one-component system of c
loids interacting via an effective HamiltonianHeff[Hcc1V
1Vc

ext. The effective potentialV describes how the interac
tions between the colloids are modified by the presence
the polymer and represents the grand potential of the id
polymer coils in the presence of both the applied exter
field Vp

ext and the external field of a fixed configuration ofNc

colloids, i.e., the partitiion function forNc colloids is

Z[exp@2bF#

5
1

Nc!Lc
3Nc E dRNc exp@2b~Hcc1V1Vc

ext!#, ~5!

where

exp@2bV#[ (
Np50

` zp
Np

Np! E drNp exp@2b~Hcp1Vp
ext!#.

~6!
5-2
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INHOMOGENEOUS MODEL COLLOID-POLYMER . . . PHYSICAL REVIEW E 63 041405
It is clear that, in general, the effective potent
V[V($RNc%) is still many body in character, because t
free volume available to the polymer coils, on which it d
pends, is different for each configuration$RNc% of the Nc
colloids. The essential simplification provided by this mod
is that, because the polymer coils are noninteracting, b
Hcp andVp

ext appear in Eq.~6! as external~one-body! fields.
If the polymers were allowed to interact, as is the case fo
binary hard sphere mixture, then the Boltzmann factor wo
contain an additional termHpp , which would complicate the
analysis considerably—see below. As bothHcp andVp

ext ap-
pear as external fields, the right hand side of Eq.~6! can be
expressed as an exponential:

exp@2bV#5 (
Np50

` zp
Np

Np! H E dr j

3expF2bS (
i 51

Nc

fcp~ uRi2r j u!

1vp
ext~r j !D G J Np

5expH zpE dr j expF2bS (
i 51

Nc

fcp~ uRi2r j u!

1vp
ext~r j !D G J . ~7!

In order to evaluate this expression we expand the integra
terms of the Mayer function of the colloid-polymer intera
tion potential, f i j [ f (uRi2r j u)[exp@2bfcp(uRi2r j u)#21.
For a hard sphere interactionf i j is simply a step function,
thus allowing a geometrical interpretation to be given to
resulting integrals. Performing the cluster expansion yiel

2bV5zpE dr jej)
i 51

Nc

~11 f i j !

5zpE dr jej1(
i 51

Nc

zpE dr j f i j ej

1(
i ,k

Nc

zpE dr j f i j f k jej1¯ , ~8!
u
m

ca
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where ej[exp@2bvp
ext(r j )# is the Boltzmann factor of the

polymer external potential. Although this procedure is sim
lar in spirit to a standard virial expansion, it is not a dens
expansion because all terms are linear in the fugacity of
polymer as a result of the exponentiation in Eq.~7!. Note that
for an ideal polymerzp5bPp

r 5rp
r (zp), wherePp

r andrp
r are

the pressure and density of the polymer reservoir, resp
tively. Equation~8! can be written in diagrammatic term
@11# as

~9!

where~i! each black circle represents a factor ofzp , and an
integral over volume V weighted with a factor
exp@2bvp

ext#, and ~ii ! each open circle represents anf bond
and a sum over the colloid coordinates. If the polymers w
allowed to interact then this expansion would immediat
become much more complicated as it would also invo
polymer-polymer Mayer bonds. A full diagrammatic expa
sion of V for a homogeneousmixture with arbitrary~pair-
wise! interactions can be found in Ref.@12# where the for-
malism is applied in the context of binary hard sphe
mixtures. Each term in the effective potentialV can then be
classified according to the numbern50,1,2, . . . ,Nc of col-
loids that interact simultaneously with the sea of ideal po
mer:

bV5 (
n50

Nc

bVn . ~10!

First, we review the evaluation ofV for a homogeneous
system for whichvp

ext(r i j )50, i.e., ej[1. It follows that
2bV0

bulk5zpV and 2bV1
bulk52zpNcp(sc1sp)3/6

52zphc(11q)3V, wherehc5(p/6)sc
3Nc /V is the colloid

packing fraction andq[sp /sc , is the size ratio@3#. For the
homogeneous system the one-body termV1 is a constant,
independent of the colloid coordinates; however, as we s
see, this is not generally the case, and for inhomogene
systemsV1 acquires a spatial dependence determined by
external potential. The integral required for2bV2

bulk is sim-
ply the convolution of two excluded volume spheres, giv
by the volume of a lens shaped region, multiplied byzp .
Thus we findV2

bulk5S i , jfAO(Ri j ) wherefAO(R) is the fa-
miliar Asakura-Oosawa pair potential, given by
bfAO~R!5H 2
p

6
sp

3zp

~11q!3

q3 H 12
3R

2~11q!sc
1

R3

2~11q!3sc
3J , sc,R,sc1sp

0, R.~sc1sp!.

~11!
of
eo-
size
i-
It should be noted that Eq.~8! for V admits any configu-
ration of the colloids, since it contains no information abo
Hcc or Vc

ext. However, because all physical properties co
from the substitution of Eq.~8! into Eq. ~5!, unphysical con-
figurations where colloids overlap are unimportant. Identi
t
e

l

considerations also apply to all higher-body terms. One
the most attractive features of the present model is that g
metrical arguments can be used to show that when the
ratio q,2/)2150.1547, all three- and higher-body contr
butions toV are identically zero, i.e.,Vn.2[0. This corre-
5-3
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FIG. 1. The shaded region contributes to t
one-body integral in Eq.~8!. When the position
of the center of the colloidRz>(1/2)(sc12sp)
the entire exclusion sphere contributes, but f
Rz,(1/2)(sc12sp) overlap with the polymer
exclusion layer of thicknesssp/2 at the wall in-
troduces a spatial dependence.
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sponds to a situation where there can be no triple overla
excluded volume regions, even when three colloids are
simultaneous contact. As a result, there exists an exact m
ping @3,7# between the full two-component AO mixture an
the effective one-component system of colloids interact
via the effective bulk HamiltonianV0

bulk1V1
bulk1V2

bulk

1Hcc . In calculating thermodynamic quantities from the e
fective Hamiltonian one must be careful to take into acco
the effects of the zero- and one-body termsV0

bulk andV1
bulk ,

which are often neglected. As both of these terms are in
pendent of colloid coordinates$RNc% they have no effect on
the equilibrium structure of the effective one-component s
tem. However, as these terms are linear inV andNc , respec-
tively, they do contribute to shifts in both the pressure a
chemical potential and provide substantial contributions
the total compressibility of the mixture, making this ve
different from the osmotic compressibility calculated direc
from the effective Hamiltonian@7#. Note that these term
have no effect on the phase equilibria of the mixture@12#.

If we now turn to the inhomogeneous situation whe
bothvc

ext andvp
ext are nonzero, Eq.~8! still provides an exact

expression for the effective Hamiltonian; all that remains
to specifyvp

ext. For the purpose of illustration let us specia
ize to the simplest possible case where bothvc

ext and vp
ext

represent a planar hard wall located in thex-y plane:
a
a

e
l

al
x
d

th

e
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vc
ext~Rz!5H `, Rz,

1
2 sc

0, Rz>
1
2 sc ,

vp
ext~r z!5H `, r z,

1
2 sp

0, r z>
1
2 sp .

~12!

We now proceed to evaluate the integrals in Eq.~8! one at
a time. The zero-body term2bV0 is simply zpV, the same
as in bulk. The one-body termbV1 , however, is now a
function of thez component of the colloid center coordina
Rz . This dependence arises from the presence of the Bo
mann factorej in the integrand, which for a hard wall inter
action is simply a step function. The only contribution toV1

comes from the shaded volume shown in Fig. 1. Thus
Rz>

1
2 (sc12sp), V15V1

bulk , whereas for Rz,
1
2 (sc

12sp) overlap with the polymer exclusion layer reduces t
shaded volume and we find

V1~Rz!5V1
bulk1(

i 51

Nc

fAO
wall~Rzi!, ~13!

where the one-body potential
bfAO
wall~ z̃!5H 2

1

6
sp

3zp

1

2q3 @2~q2 z̃!11#@~31q!q2 1
2 ~32q!~2z̃21!2 1

2 ~2z̃21!2# for 1
2 sc,Rz,

1
2 ~sc12sp!

0 otherwise,
~14!
In
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-
rlap
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-
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of
and wherez̃[Rz /sc . This is the familiar Asakura-Oosaw
depletion potential between a single colloid and a planar h
wall. Note thatfAO

wall has rangesp and a similar shape to th
AO pair potentialfAO ; it constitutes an attractive potentia
well at the wall. The depletion of polymer at the hard w
always produces an effective wall-colloid attraction. It is e
pected, therefore, that the colloids will be preferentially a
sorbed by a hard wall. Once again it is worth noting that
integral forV1 permits any value ofRz but substitution into
Eq. ~5! eliminates unphysical configurations of colloid. If w
turn now to the two-body termV2 , the value of the required
rd

l
-
-
e

integral is given by the shaded volume shown in Fig. 2.
general, when a pair of colloids are close to the wall,
two-body term in Eq.~8! no longer yields the bulk Asakura
Oosawa expression as there exists a region of triple ove
between the colloid-colloid lens and the polymer exclus
layer @see Fig. 2~a!#, which does not contribute to the inte
gral. The two-body potential thus becomes a complica
function of R1 and R2 and not simply a function of the
separationuR12R2u. However, simple geometrical argu
ments can be used to show that forq,0.25 all Vn for n
>2 are unaltered from their bulk forms in the presence
5-4
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FIG. 2. The shaded region contributes to the two-body term in Eq.~8!. For larger size ratios~a! the exclusion lens between colloid
overlaps with the polymer exclusion layer at the wall and the two-body potential becomes a complicated function. However, for si
q,0.25 ~b! this triple overlap cannot occur and so the bulk Asakura-Oosawa pair potential, given by the volume of the lens, rema
in the interfacial region.
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the hard wall. Physically, this corresponds to a situat
where the exclusion layer at the wall and the colloid-collo
exclusion lens cannot overlap, even when the colloids ar
contact with the wall; see Fig. 2~b!. Thus, forq,0.25, we
are left with an effective one-component Hamiltonian for
fluid of colloids near a hard wall that has the form

Heff5V0
bulk1V1

bulk1Hcc1(
i

Nc

vc
ext~Rzi!1(

i

Nc

fAO
wall~Rzi!

1(
i , j

fAO~Ri j !1higher-body terms, ~15!

where the higher-body terms are identical to those in bulk
follows that forq,0.1547 all of the higher-body terms be
come identically zero, and the effective HamiltonianHeff is
exact when truncated after the pairwise term. Thus foq
below this critical size ratio there exists an exact mapp
between the partition function of theinhomogeneousmixture
and that of the effective one-component system of collo
described by the truncatedHeff. This Hamiltonian differs
from that in bulk only by the addition of the one-bod
depletion-induced attractive potentialfAO

wall and the hard wall
external potentialVc

ext. Note that the polymer manifests itse
in Heff solely through the dependence ofV0

bulk , V1
bulk , fAO

wall ,
and fAO on the polymer fugacityzp . Although we have
taken the case of a planar hard wall as an example, there
many other external potentials for which the above pro
dure could be usefully employed.

At this stage it is appropriate to consider the situation
spontaneously generated inhomogeneities where the de
profiles of colloid and polymer are spatially varying in th
absence of external fields. Examples are the planar inter
between demixed fluid phases@13,10# and colloidal crystals
where the densities vary periodically. In such casesHeff re-
duces to the effective Hamiltonian of the bulk system; th
are no additional contributions associated with the inhom
geneity. At first sight this may seem somewhat surprising
the distribution of polymer in a colloidal crystal, or in th
region of the fluid-fluid interface, is clearly very differen
from that in a bulk fluid, and one might imagine that diffe
ent effective interactions might arise. However, because
work exclusively with a reservoir of polymer, it is the fuga
ity zp of this reservoir that provides the only parameter
04140
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which we can tune the interactions in the system. Aszp is
constant throughout an inhomogeneous fluid, then so to
the effective interaction between the colloids, regardless
the local polymer density. This serves to reinforce the f
that the species that is integrated out is treated grand can
cally.

III. OBTAINING THE POLYMER DISTRIBUTION FROM
THE EFFECTIVE HAMILTONIAN

A. Inhomogeneous case

Using the effective HamiltonianHeff derived in the previ-
ous section one may treat the colloids as an effective o
component system with given interactions and subject to
external field. Once the effective Hamiltonian has be
specified one is completely free to choose how to tackle
statistical mechanics of the effective one-component syst
Thus, using a theory or a simulation of a one-compon
fluid it is possible, in principle, to calculate any of the r
quired equilibrium properties of the colloidal particles. How
ever, it would seem that by adopting an effective Ham
tonian for the colloids all information about the distributio
of the polymer has been lost; the polymer degrees of fr
dom have been integrated out. On the other hand, by u
the effective Hamiltonian, we have obtained informati
about the properties of the colloids and so, returning to
original problem, in which both species are treated on
equal footing, we should be in a better position to calcul
the properties of the polymer; half of the problem has
ready been solved. In order to recover information about
polymer distribution we make use of the standard functio
relation

rp
~1!~r !5

dF@vp
ext#

dvp
ext~r !

, ~16!

which is easily derived by taking the functional derivative
Eq. ~4! @14#. If, however, we use Eq.~5! in order to perform
this functional derivative, where the partition functionZ has
been written in one-component form, then it is clear that
only quantity in this expression that is a functional ofvp

ext is
the effective potentialV[V($RNc%;@vp

ext#). Taking the
functional derivative yields
5-5
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rp
~1!~r !5

1

Z

1

Nc!Lc
3Nc E dRNc

dV~$RNc%;@vp
ext# !

dvp
ext~r !

3exp@2b~Hcc1V1Vc
ext!#. ~17!

Now, asV consists of a sum of terms as given in Eq.~10! the
polymer profile can also be written as a sum of terms, e
of which is the average over the colloids~at fixed fugacity of
the polymer reservoir! of the functional derivative of a term
in the effective potential:

rp
~1!~r !5K dV0@vp

ext#

dvp
ext~r ! L

zp

1K dV1@vp
ext#

dvp
ext~r ! L

zp

1K dV2@vp
ext#

dvp
ext~r ! L

zp

1¯ . ~18!

This expression is valid for any binary mixture with int
grable pairwise interactions. Moreover, it is easily gene
ized to an arbitrary number of species. We now specializ
the Asakura-Oosawa model, where each term in the exp
sion of V is given by a simple integral and the function
dependence is explicit. For this model the first term of E
~18! is given byzp exp@2bvp

ext(r )# and is independent of th
colloid distribution. The second term is slightly more com
plicated and incorporates information about the volume fr
which the polymers are excluded due to the presence o
dividual colloids; it thus requires the equilibrium densi
profile rc

(1) of the colloids as input. It is important to not
that the required colloidal density profile must be calcula
using the effective Hamiltonian~15!. As might be expected
the two-body term involves the inhomogeneous pair corre
tion functionrc

(2) of a system of colloids interacting via th
effective Hamiltonian~15!, and includes information abou
the effect of correlations between pairs of colloids on
~local! free volume available to the polymer. This procedu
can be continued to generate an exact expression for
polymer profile, which, in general, requires knowledge of
n-body correlation functions of the colloids, calculated usi
the effective Hamiltonian. The resulting expression for t
polymer profile is given by

rp
~1!~r !5zp exp@2bvp

ext~r !#S 11E dR2f cp~r2R2!rc
~1!~R2!

1 1
2 E dR2E dR3f cp~r2R2! f cp~r2R3!

3rc
~2!~R2 ,R3!1¯ D . ~19!

This expression is valid for arbitrary external potentialsvp
ext

and vc
ext, but is of limited use for large size ratios since

requires higher-order correlation functions of the colloid
which are difficult to obtain from the effective Hamiltonian
The usefulness of Eq.~19! becomes evident for smaller siz
ratios where geometrical arguments, similar to those u
previously, show that forq,0.1547 all terms involvingrc

(n)

for n>3 are identically zero and so the highest-order cor
lation function required isrc

(2) . For very small size ratios
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sayq,0.1, the first two terms are expected to dominate a
the polymer profile is primarily determined by the exclusi
volume due to individual colloids. In these circumstanc
one might employ simulation data forrc

(1) in order to make
an estimate of the polymer profile.

B. Bulk case

In order to use Eq.~19! for inhomogeneous situations
even for q,0.1547, one is required to calculate the tw
body correlation functionrc

(2)(R1 ,R2), which is not easy to
obtain either from simulation or from theory. However, in
bulk fluid this function reduces torc

2gcc(R12;rc ,zp) where
rc5Nc /V is the number density of the colloid an
gcc(R12;rc ,zp) is the colloid-colloid radial distribution
function. Equation~19! can be simplified to yield a usefu
expression for the actual densityrp of polymer in the system
at given fugacityzp of the polymer reservoir and givenhc .
By a simple change of variable Eq.~19! reduces to the fol-
lowing bulk expression:

rp /rp
r 512hc~11q!3

2
12hc

2q3

hp
r E

1

11q

dr r 2gcc~r ;rc ,zp!bfAO~r !1¯ ,

~20!

wherer[R12/sc and hp
r 5prp

r sp
3/6 is the packing fraction

of the polymer in the reservoir. It is important to note that t
averages in Eq.~20! are taken over all configurations of th
colloids interacting via the bulk effective Hamiltonian. If th
averages were taken using merely the ‘‘bare’’ hard sph
colloid-colloid interactionfcc , then the effect of the poly-
mer on the colloid distribution would be neglected; it is th
information that is contained ingcc(r ;rc ,zp) and in the
higher-order correlation functions entering the higher-or
terms in Eq.~20!. Forq,0.1547 the higher-order terms van
ish and Eq.~20! provides an explicit and exact expression f
the free-volume fractiona of a colloid-polymer mixture, de-
fined by

a~rc ;zp![rp /rp
r . ~21!

The theory requires as input the radial distribution functi
of the colloids,gcc , which can be readily obtained from
simulation or integral equation theories of the effective on
component bulk system described by the pair poten
fcc(R)1fAO(R).

Equation~20! for a provides the connection between th
free-volume@5# and perturbation/integral-equation theori
@3,4# of the bulk phase equilibria. In order to determine t
thermodynamic properties of a homogeneous system f
knowledge of the bulk pair correlation functions three ind
pendent routes are available, namely, the virial, compre
ibility, and internal energy equations. The quantity of inter
in determining the phase equilibria is the Helmholtz fr
energyF which is conveniently obtained within the intern
energy route by the integration
5-6
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bF~rc ;l51!

V
5

bF0~rc ;l50!

V

1
1

2
rc

2E
0

1

dlE
0

`

dR g~R;rc ,l!bf1~R!.

~22!

This is an exact expression for a one-component system
teracting solely via a pair potentialf, which is usually di-
vided into ~repulsive! reference and~attractive! perturbation
parts, f5f01lf1 , where l is a coupling constant tha
switches on the effect of the perturbation as its value
creases from 0 to 1@15#. Standard first-order perturbatio
theory is obtained from Eq.~22! if the l dependence is ne
glected andg(r ;rc ,l) is replaced byg(r ;rc ,l50). Such
an approach is taken in several studies of phase equilibria@3#
with the Asakura-Oosawa pair potentialfAO taken asf1 ,
and with f05fcc , the bare hard sphere potential betwe
colloids.

An alternative approach to calculating the bulk phase
havior is the free-volume approach of Lekkerkerkeret al.
@5#, which appears to have a basis quite different from t
given by Eq.~22!. The free-volume theory for the free en
ergy of a bulk colloid-polymer mixture can be derived b
considering the identity

bF~Nc ,V,zp!5bF~Nc ,V,zp50!

1E
0

zp
dzp8S ]bF~Nc ,V,zp8!

]zp8
D , ~23!

which can be written as

bF~rc ,zp!

V
5

bF~rc ,zp50!

V
2E

0

zp
dzp8a~rc ;zp8!, ~24!

since from Eq. ~4! the partial derivative is2^Np&zp
/zp

52a(rc ;zp)V, where ^Np&zp
is the average number o

polymers in the (Nc ,V,zp) ensemble and we have used E
~21! and the fact thatzp5rp

r for an ideal polymer. The par
tial derivative can also be obtained from Eqs.~5! and~8! and
is given by

2S ]bF~Nc ,V,zp!

]zp
D

5
Trc$exp@2bHeff#*dr jP i 51

Nc ~11 f i j !%

Trc exp@2bHeff#
. ~25!

where Trc is short for the integral*dRNc over the coordi-
nates of the colloidal particles. Given the geometrical int
pretation of the Mayer functionf i j for the colloid-polymer
interaction, the right hand side of Eq.~25! can be interpreted
as the average free volume available to the polymer at fi
fugacity of the polymer reservoir,^Vfree&zp

[aV. If we focus

first on size ratiosq,0.1547, where use of the effectiv
Hamiltonian truncated at the Asakura-Oosawa pair poten
term is exact, we can establish the connection between
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free-volume and standard perturbation/integral equa
theories by substitutinga obtained from Eq.~20! into Eq.
~24! and using the substitutionzp8→lzp . This yields

bF~rc ;l51!

V
5

bF0~rc ;l50!

V
2zp@12hc~11q!3#

1
1

2
rc

2E
0

1

dlE
0

`

dR gcc~R;rc ,l!bfAO~R!,

~26!

i.e., we simply recover Eq.~22! with an additional term
2zp@12hc(11q)3# arising from the zero- and one-bod
terms. F0(rc ;l50) refers to the Helmholtz free energy o
the hard sphere fluid of densityrc .

So far all is exact and we have merely demonstrated
utilizing Eq. ~23! is equivalent to utilizing Eq.~22!, the stan-
dard coupling constant integration for the free energy o
system described by a pairwise potential. In the approac
Ref. @5# a(rc ;zp) is replaced bya(rc ;zp50), i.e., the free-
volume fraction of a test polymer in the low-density limi
for which the scaled particle theory@17# provides a good
approximation. It is straightforward to show that the resu
ing free-volume approximation forF reduces to the standar
first-order perturbation theory result,

bF~rc ;l51!

V
5

bF0~rc ;l50!

V
2zp@12hc~11q!3#

1
1

2
rc

2E
0

`

dR gcc~R;rc ,l50!bfAO~R!

~27!

with gcc(R;rc ,l50) the hard sphere radial distributio
function given by a scaled particle approximation. Clear
more accurate results fora for fluid states would be obtaine
by employing Eq.~20! with integral equation closures suc
as the Percus-Yevick that are known to yieldgcc(R;rc ,l) in
excellent agreement with simulation@3#. Note that, although
for q,0.1547 a is dominated by the term 12hc(11q)3

for all ~physical! values of hc and one might expect the
free-volume approximation~27! to be accurate, it is thede-
rivativesof a with respect tohc that determine phase coex
istence. That is why the free-volume approximation and p
turbation theory yield metastable fluid-fluid coexisten
curves at unrealistically highhc for q50.1 @3#. If one deter-
mines the free energy from Eq.~26!, using the Percus-
Yevick approximation forgcc(R;rc ,l), the resulting fluid-
fluid coexistence curve is closer to that from simulation@16#.

It is for larger size ratios, where the pair potential descr
tion is no longer exact, that the free-volume approximation
of greater interest. Using the scaled particle expression@17#
for a, which is central to the free-volume approach, cons
tutes an approximate resummation of the full expansion~20!.
Thus the approximation captures some of the effects
three- and higher-body effective interactions, which a
known to be important at larger size ratios. Precisely wh
effects are captured and which are not and how to impr
5-7
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systematically upon the basic approximation that s
a(rc ;zp)5a(rc ;zp50) is not obvious.

An important feature of our approach is that it provides
means of obtaining the polymer densityrp

(1)(r ) in the pres-
ence of acrystalline array of colloids. Equation~19!, trun-
cated at the two-body term and withvp

ext[0, should remain
valid for a bulk crystal providedq,0.1547. Given an ap
proximation for rc

(2) in the crystal one can determine th
polymer density from knowledge of the~periodic! colloid
densityrc

(1)(R). This result incorporates much more info
mation about the distribution of colloid than does the fre
volume formula wherea is assumed to depend only on th
~constant! average colloid densityrc , i.e., the same formula
is used for the solid and fluid phases@3,5#. Formally we can
write Eq. ~19! as

rp
~1!~r !5zp

!~r !a~r ;zp!, ~28!

where zp
!(r )[zp exp@2bvp

ext(r )# and a(r ;zp)
52dbF@vp

ext#/dzp
!(r ) depends on the average spatial dis

bution of the colloids. The free energy can be obtained
integration and the final term in Eq.~23! is replaced by
2*0

zpdzp8*dr a(r ;zp8)exp@2bvp
ext(r )#. For the bulk colloidal

crystal, where vp
ext[0, Eq. ~28! reduces to rp

(1)(r )
5rp

r a(r ;zp) anda(r ;zp) can be interpreted as the spatia
varying free-volume fraction of polymer in the crystal. No
that Eq.~19! implies that ifrc

(1)(r ) is periodic then so is the
one-body polymer profilerp

(1)(r ).
We conclude this section by remarking that an equival

procedure can be developed for additive binary hard sph
mixtures. However, in this case the depletion pair poten
and the higher-body potentials are not known explicitly
that each term in the effective Hamiltonian is known on
approximately@12#. Moreover, truncation at the pair poten
tial term is no longer exact for any size ratio since inter
tions between the small spheres~nonvanishing small-smal
Mayer function! can mediate many-body effective collo
interactions at all values ofq. Thus, in principle, one should
always employ the fulln-body expansion. In practice, fo
small size ratiosq<0.1, a is given rather accurately by th
expansion truncated after the zero-and one-body terms
for q<0.2 the main features of the bulk phase behavior
well described by an effective Hamiltonian that incorpora
only the pair potential contribution@12#.

IV. THE MIXTURE NEAR A HARD WALL

A. Sum rules for contact densities

In this section we specialize to the colloid-polymer~AO!
mixture near a planar hard wall described by the exter
potentials~12! and consider the density profilesrc(z) and
rp(z). Henceforward, for ease of notation, we replace
colloid z coordinateRz by z. It is well known that for any
one-component fluid near a hard wall the contact densityrw
satisfies the sum rulerw5bP, whereP is the pressure of the
bulk ~reservoir! fluid far from the wall. This sum rule pro
vides a useful test for the reliability of theories and for t
accuracy of simulations. For example, it is obeyed by n
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local density functional treatments of the inhomogeneo
fluid but is not obeyed by the standard closure approxim
tions to the wall-particle Ornstein-Zernike equation@18#. For
the case of a binary mixture near a hard wall the sum r
generalizes toSn51,2rwn5bP, i.e., the sum of the contac
densities is proportional to the~total! pressure of the bulk
mixture. Rickayzen@19# has shown that it is possible to de
fine a normal pressurePn for each speciesn such thatrwn

5bPn . EachPn is given by a bulk fluid virial-like equation.
However,Pn cannot be expressed in terms of direct corre
tion functions and is therefore not amenable to calculat
within DFT.

If we treat our AO mixture as a binary fluid it follows tha
the sum of contact densities must satisfy

rwc1rwp5bP ~29!

with rwc[rc(sc
1/2) and rwp[rp(sp

1/2). On the other
hand, if we make the mapping to an effective one-compon
fluid of colloids and consider the caseq,0.25, where inte-
grating out the polymer at the hard wall yields the addition
wall-colloid depletion potential~14! but no other inhomoge-
neous contribution, we can integrate the equation of hyd
statics@18# to obtain

rwc2bE
sc

1/2

`

dzrc~z!
dfAO

wall~z!

dz
5bPN~`!, ~30!

where PN(`) is the normal component of the pressure
from the wall. Note that the integrand in Eq.~30! is zero for
z>(sc12sp)/2—see Eq. ~14!. It remains to identify
PN(`). This quantity should be identified with the viria
pressure of the bulk one-component fluid which, in turn, c
responds to the osmotic pressureP(rc ;zp). Thus,

PN~`!5P~rc ;zp![2S ]A

]VD
Nc ,zp

, ~31!

where exp@2bA#5Trc exp@2bW# with

W~Nc ,zp ;$RNc%!5(
i , j

@fcc~Ri j !1fAO~Ri j !#1 (
n.2

Vn ,

~32!

i.e., A(rc ;zp) is the Helmholtz free energy of the one
component system with an interaction Hamiltonian cons
ing of two- and higher-body interactions@7#. The total free
energy F5A2Pp

r (zp)@12h(11q)3#V so that the total
pressure is the sum of the osmotic pressure and that of
polymer reservoir:

P5P~rc ;zp!1Pp
r ~zp!. ~33!

Equations~29! and~30! can be combined using Eqs.~31! and
~33! to yield

rwp2rp
r 52bE

sc
1/2

`

dzrc~z!
dfAO

wall~z!

dz
, ~34!
5-8
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INHOMOGENEOUS MODEL COLLOID-POLYMER . . . PHYSICAL REVIEW E 63 041405
which is a sum rule giving the polymer contact density
terms of an integral of the colloid profile over the range
the wall-colloid depletion potential. This result is, of cours
specific to the AO model in the regimeq,0.25. In practice
its usefulness for simulations will be restricted toq
,0.1547 since only for these size ratios is the mapping
pair potential Hamiltonian exact. Equation~30! should be
satisfied by the colloid profiles calculated from simulation
from a nonlocal DFT for the effective one-component s
tem, providedq,0.1547. We shall use it to examine th
accuracy of our numerical results presented below.

B. Colloid density profiles from DFT and simulation

In order to calculate the colloid profilerc(z) we require a
DFT for a one-component fluid in which the fluid-fluid pa
potentialfcc(R)1fAO(R) exhibits a deep, short ranged a
tractive well ~for small q!, outside the hard core. Such p
tentials induce much stronger pair correlations at the sa
density than those with longer ranged attraction, say
Lennard-Jones fluid. In particular the ‘‘stickiness’’ leads
very high values ofgcc at contact,R5sc

1 . At present there
is no reliable procedure for incorporating such stro
attraction-induced correlation effects into DFT and we ha
chosen to employ the crudest mean-field treatment of att
tive forces. The~grand potential! functional that we mini-
mize is a standard one@20#:

VV@rc#5FHS@rc#1 1
2 E dR1E dR2rc~R1!rc~R2!fatt~R12!

1E dR@mc2V~R!#rc~R!, ~35!

where mc is the chemical potential of the colloids an
V(R)[vc

ext(z)1fAO
wall(z) is the effective wall potential ap

propriate to the hard wall. We restrict consideration to flu
like states ~no spontaneous crystalline ordering! so that
rc(R)[rc(z). FHS@rc# is the intrinsic free energy func
tional of the hard sphere fluid for which we use the fund
mental measures theory of Rosenfeld@21#. The latter is
known to be accurate for a wide variety of highly inhom
geneous situations@20,21#. A mean-field treatment leaves a
bitrary the specification of the attractive pair potent
fatt(R) inside the hard core. In order to mimic some effe
of correlations we set

fatt~R!5H fAO~R!, R.sc

fAO~sc!, 0,R<sc.
~36!

Such a choice yields a reasonable bulk free energy den
and we checked that other choices, e.g., settingfatt(R)50
for 0,R,sc , do not lead to dramatically different colloi
profiles at the hard wall.

The Euler-Lagrange equation obtained fro
dVV@rc#/drc(z)50 was solved by Picard iteration for give
bulk colloid density and given polymer fugacityzp . We
present results for state points specified by the bulk pack
fractionshc5prc(`)sc

3/6 andhp
r 5prp

r sp
3/6 with rp

r 5zp .
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We chose to study AO mixtures withq50.1 since this is the
only case, withq,0.1547, for which the bulk phase diagra
has been determined fully by simulation@3#. The phase dia-
gram is shown here in Fig. 3 and coexistence data is give
Table I. The fluid-fluid transition is strongly metastable wi
respect to a very broad, inhc , fluid-solid coexistence for this
size ratio. We deliberately avoid the bulk fluid-solid trans
tion by restricting calculations tohp

r <0.1, i.e., to small poly-
mer concentrations.

For comparison, we have also performed Monte Ca
simulations of the effective one-component system in wh
the colloids interact with a fluid-fluid pair potentialfcc(R)

FIG. 3. The simulation phase diagram for a system of collo
interacting via the effective one-component Hamiltonian, i.e.,
Asakura-Oosawa pair potential~11! for a size ratioq[sp /sc

50.1 @3#. In ~a! hc is the colloid packing fraction andhp
r is the

packing fraction of ideal polymer in the reservoir. In~b! we plot the
phase diagram in terms ofhc andhp , the packing fraction of ideal
polymer in the actual mixture given by the approximationhp /hp

r

512hc(11q)3. F and S denote the stable fluid and solid~fcc!
phases whileF1S, F1F, andS1S denote, respectively, the stab
fluid-solid, the metastable fluid-fluid, and the metastable solid-s
coexistence region.
5-9
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J. M. BRADER. M. DIJKSTRA, AND R. EVANS PHYSICAL REVIEW E63 041405
1fAO(R) and an effective wall potentialV(R)[vc
ext(z)

1fAO
wall(z). In order to investigate the adsorption propert

of the fluid, it is important to study the fluid in contact wit
a singlewall. Here we use a simulation method in which t
planar hard wall is located atz50 and a self-consistently
determined densityrc(`) is imposed far from the hard wall
using a penalty function that suppresses large deviat
from rc(`) and, hence, ensures a flat density profile. Mo
details on this simulation method are given in Ref.@22#.
Simulations are performed using 1920 particles in a box
lateral dimensionsLx /sc58.8606, Ly /sc59.5919, and
Lz /sc530.44 or Lz /sc540.15, for hc50.40 and hc
50.30, respectively. More than 53104 Monte Carlo sweeps
were allowed for equilibration and the density profiles we
accumulated over a further 53105 sweeps~one sweep is one
attempted move per particle!.

The effects on the colloid profile of adding polymer a
very pronounced as is illustrated in Fig. 4 forhc50.3. In the
absence of polymer,hp

r 50 @see Fig. 4~a!#, the system re-
duces to hard spheres at a hard wall for which the Rosen
functional performs very well. The results of DFT and t

TABLE I. The coexisting densities@expressed in terms of pack
ing fractions of colloid (hc) and ideal polymer (hp)# at the stable
fluid-solid, metastable fluid-fluid, and weakly metastable solid-so
transitions for a bulk colloid-polymer mixture with size ratioq
50.1 and varying reservoir polymer packing fractionshp

r as deter-
mined by Monte Carlo simulation@3#. The polymer packingshp in
the actual mixture were calculated from the formulaa5hp /hp

r

512hc(11q)3.

Fluid-solid
hp

r hc ~fluid! hp ~fluid! hc ~solid! hp ~solid!

0.00 0.494 0.000 0.545 0.0000
0.02 0.492 0.007 0.560 0.0051
0.04 0.491 0.014 0.569 0.0097
0.06 0.486 0.021 0.587 0.0131
0.08 0.480 0.029 0.688 0.0067
0.10 0.469 0.038 0.696 0.0074
0.12 0.453 0.048 0.702 0.0079
0.15 0.345 0.081 0.709 0.0084
0.17 0.212 0.122 0.714 0.0084
0.20 0.029 0.192 0.718 0.0089
0.22 0.008 0.218 0.720 0.0092
0.30 6.2E-4 0.300 0.721 0.0121
0.34 7.9E-5 0.340 0.722 0.0133

Solid-solid
hn

r hc ~solid 1! hp ~solid 1! hc ~solid 2! hp ~solid 2!

0.08 0.577 0.0186 0.677 0.0079
0.10 0.563 0.0251 0.693 0.0078
0.12 0.564 0.0299 0.697 0.0087

Fluid-fluid
hp

r hc ~fluid 1! hp ~fluid 1! hc ~fluid 2! hp ~fluid 2!

0.29 0.027 0.2796 0.461 0.1121
0.30 0.015 0.2940 0.474 0.1107
0.34 0.004 0.3382 0.482 0.1219
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FIG. 4. Colloid density profiles near a hard wall: the op
circles are the Monte Carlo results while the solid lines denote
DFT results. In each case the bulk colloid packing fractionhc

50.3 and the size ratioq50.1. The packing fraction of ideal poly
mer in the reservoir increases from~a! hp

r 50 ~pure hard spheres! to
~b! hp

r 50.05 and~c! hp
r 50.10. The insets show the results on

expanded vertical scale. Note the rapid increase in contact v
rc(sc

1/2) ashp
r is increased.

d
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INHOMOGENEOUS MODEL COLLOID-POLYMER . . . PHYSICAL REVIEW E 63 041405
present simulation are almost indistinguishable. On addin
very small amount of polymer,hp

r 50.05, the wall-induced
depletion leads to a much higher value of the~reduced! con-
tact density,rwcsc

3'6.41 as compared with 2.32 for har
spheres at a hard wall. On the scale of Fig. 4~b! there is good
agreement between theory and simulation. When the sca
expanded~see inset! there are differences, which we sha
return to below.

Figure 4~c! displays the results forhp
r 50.1. Now the ef-

fect of depletion is even more pronounced and the~reduced!
contact density from DFT increases to 15.52. Once again
overall agreement with simulation is good. Note that the~re-
duced! colloid density profiles decay rapidly from the ve
high contact values to values of about unity over the ra
sp50.1sc of the wall depletion potentialfAO

wall . This means
that the amount adsorbed in the contact ‘‘layer’’ remain
fraction of a colloid monolayer. The colloid is respondin
~essentially! as an ideal gas in the deep wall depletion pot
tial. Indeed, the large contact densities can be accou
for qualitatively by the ideal gas resultrwcsc

3

5rc(`)sc
3 exp@2bfAO

wall(sc)# plus some small enhanceme
from packing effects. There is no evidence for any wa
induced local crystallization at these polymer concentratio
The colloid density at the first minimum of the profile is n
substantially different from the bulk densityrc(`). Figure 5
shows the corresponding results forhc50.4. The bulk hard
sphere fluid is closer to freezing (hc f50.494) and the order
ing of hard spheres at the hard wall is more pronounced@see
Fig. 5~a!#. The Rosenfeld functional still provides an exce
lent account of the density profile at this higher packing fr
tion. As polymer is added the variation in the profiles
similar to that for the lower packing fraction of colloids. Th
contact densities become even higher for a givenhp

r ; DFT
givesrwcsc

3'27.64 forhp
r 50.1. This implies that the pack

ing effects are much more significant athc50.4. The level
of agreement with simulation is similar to that forhc50.3
and the DFT appears to capture all the main features in
shape of the colloid profiles. These are nontrivial as can
seen from the insets to Figs. 4 and 5. On increasinghp

r at
fixed hc the minima inrc(z) shift to smallerz and the os-
cillations appear to decay more rapidly. Whether these
tures can be accounted for by the general theory
asymptotic decay of density profiles@23# remains to be as
certained. The amount adsorbed in the contact layer rem
quite small forhc50.4 and, as forhc50.3, at the first mini-
mum in the density profile the colloid density remains su
stantial, typically about half the bulk value. We checked
numerics of the DFT calculations by comparing the cont
valuesrwc with those resulting from Eq.~30!, with the os-
motic pressureP obtained from the bulk free energy give
by the DFT, Eq.~35!. The results agree to better than 0.15
in all cases.

Performing Monte Carlo simulations for the strongly a
tractive and very short ranged potentials that arise foq
50.1 andhp

r 50.1 is not straightforward. In Monte Carl
simulations, we select a particle at random and give i
random displacement. Usually the size of the displaceme
chosen so that about 50% of the attempted moves are
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FIG. 5. Colloid density profiles near a hard wall: the op
circles are the Monte Carlo results while the solid lines denote
DFT results. In each case the bulk colloid packing fractionhc

50.4 and the size ratioq50.1. The packing fraction of ideal poly
mer in the reservoir increases from~a! hp

r 50 ~pure hard spheres! to
~b! hp

r 50.05 and~c! hp
r 50.10. The insets show the results on

expanded vertical scale. Note the rapid increase in contact v
rc(sc

1/2) ashp
r is increased.
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cepted. However, in an inhomogeneous system the ac
tance probability is not uniform throughout the system. F
instance, in a system with a strongly attractive and very sh
ranged wall-particle potential, as in our case, the accepta
probability is much lower close to the wall than in bulk.
order to obtain good statistics close to the wall, we m
choose the size of the random displacements to be m
times smaller than in bulk, corresponding to a higher ove
acceptance probability. The drawback of such a high acc
tance rate is that long simulation runs are needed for g
statistical accuracy in the bulk. In the present simulations
have chosen the acceptance probability so that equally g
statistics are obtained close to the wall as in bulk. This pr
ability is about 75%. If we increase the acceptance proba
ity, i.e., make smaller displacements, we find that the va
of the contact density increases and the width of the fi
peak of the colloid density profiles decreases—moving
ward the DFT results. However, simultaneously, the sta
tics for the second peak and for bulk become very po
making difficult any fine comparison between theory a
simulation.

V. DISCUSSION

In this paper we have developed a formal procedure
integrating out the degrees of freedom of the polymer in
inhomogeneous model colloid polymer mixture defined
Eqs. ~1! and ~2!, the Asakura-Oosawa model Hamiltonia
For highly asymmetric mixtures, with size ratioq,0.1547,
near a planar hard wall the resulting effective one-compon
Hamiltonian takes a particularly simple form, which
readily amenable to simulation studies and to investiga
by one-component DFT. Our procedure enables us to m
~exactly! a difficult binary mixture problem to its more trac
table one-component counterpart. As an illustration of
procedure we have considered the adsorption for a bin
mixture with q50.1 at a planar hard wall at two differen
values of the colloid packing fractionhc . In both cases,
adding small amounts of polymer gives rise to deep de
tion potentials at the wall, which yield, in turn, very hig
values of the colloid density near contact. The simple DF
which treats the attractive part of the effective colloid-collo
pair potential in mean-field fashion, provides a good desc
tion of the main features of the colloid density profile. The
are discrepancies between DFT and simulation but these
not large. The DFT does account for the very high cont
values that are observed in the simulations. It is importan
emphasize that for the range of polymer reservoir pack
fractions we consider, i.e.,hp

r up to 0.1, the Gibbs adsorptio
G5*0

`dz@rc(z)2rc(`)# does not increase rapidly with in
creasinghp

r . Although the colloid density is strongly en
hanced very close to the wall, i.e., within the narrow range
the wall depletion potential, this is insufficient to lead
pronounced increases inG. Moreover, the colloid density a
the first minimum remains about half the bulk density
there is no indication of wall-induced local crystallization u
to hp

r 50.1. We note that these state points are still w
removed from the bulk fluid-solid phase boundary~see Fig.
3!. Whether wall-induced crystallization sets in at sligh
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higher polymer packing or whether one must approach v
close to the bulk phase boundary in order to observe su
phenomenon remains to be investigated thoroughly. O
might certainly expect depletion effects to favor the dev
opment of crystalline layers prior to bulk crystallization. Th
main issues are~i! how close to the bulk transition must on
be before the first adsorbed layer becomes crystalline and~ii !
how do subsequent crystalline layers develop at the h
wall-fluid interface ashp

r is increased~for a fixedhc) toward
its value at bulk fluid-solid coexistence? Various scenar
are possible. There could be an infinite sequence of laye
transitions culminating in complete wetting of the wall-flu
interface by a near close packed crystal. Alternatively,
interface could remain partially wetted by crystal. We shou
recall that the adsorption characteristics of pure hard sph
at a planar hard wall remain uncertain in the approach to
freezing transition—this corresponds to increasinghc along
the axishp

r 50 in Fig. 3 toward the valuehc50.494 where
bulk freezing occurs. One still does not know whether t
hard wall–hard sphere fluid interface is completely wet
by hard sphere crystal@24#.

Similar depletion phenomena should be found for addit
binary mixtures of hard spheres near a hard wall, provid
the size ratioq is small enough. DFT calculations forhc

50.3 and 0.4 with a similar range of small sphere pack
fractions based on the Rosenfeld functional for a binary m
ture with q50.1 yield big sphere~colloid! density profiles
that are very similar to those shown here@25#. Once again
there is no sign of crystallization at the wall for the sta
points that were investigated. Detailed comparisons of
sults for additive hard sphere mixtures with those from
AO model will be presented elsewhere but we remark t
our findings are different from those of Poon and Warr
@26#, who developed an empirical approach for the calcu
tion of the onset of wall crystallization in additive binar
hard sphere mixtures. These authors find hard-wall-indu
crystallization at small sphere packing fractions that are
below the bulk fluid-solid transition obtained in Ref.@12#.
Our present results and those in Ref.@25# show no sign of
wall-induced crystallization at state points where Ref.@26#
predicts such a transition. These observations are releva
experiments. Several papers@27–29# report evidence for
wall-induced crystallization well below the bulk fluid-soli
phase boundary in mixtures of hard-sphere-like colloids a
planar wall. There are also earlier observations of wa
induced crystallization in colloid-polymer mixtures@30,31#.
How well the idealized model of the AO binary mixture ne
a planar hard wall mimics the experimental situations
mains to be ascertained but our present theoretical fra
work does allow us to investigate these problems—at le
for systems with size ratioq,0.1547.

The analysis presented in Sec. III focused on a pla
hard wall. It is straightforward to generalize to a curved ha
wall and it might be possible to develop the theory for stru
tured walls, i.e., patterned substrates. Recent experim
@32# have shown that a variety of low-dimensional colloid
fluid and solidlike phases can develop for colloid polym
mixtures adsorbed on periodically patterned templates.
5-12
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tropic depletion forces are responsible for the rich phase
havior.

We conclude by returning to the situation of spontan
ously generated inhomogeneity where the one-body den
profiles are spatially varying in the absence of external
tentials. As emphasized earlier, for such situations the ef
tive HamiltonianHeff reduces to that of the bulk system an
for q , 0.1547 Heff 5 V0

bulk 1 V1
bulk1Hcc1S i , jfAO(Ri j ),

whereV0
bulk1V1

bulk depend only onzp , the fugacity of the
reservoir. This implies that the properties of the interfac
between coexisting phases at a givenzp are determined
solely by the pair potentialfcc(R)1fAO(R) evaluated at
that value ofzp . Thus one may calculate density profiles a
surface tension at the fluid-solid interfaces and at the~meta-
stable! solid-solid and fluid-fluid interfaces that arise b
tween the phases indicated in Fig. 3 using the pair poten
description. This illustrates further the usefulness of the m
ping to an effective one-component system for highly asy
ns

ce

.

H

H

n

rd
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metric mixtures. For mixtures withq.0.1547, where inte-
grating out yields many-body contributions to the effecti
Hamiltonian, the mapping loses some of its appeal for c
culational purposes. An alternative DFT approach spec
cally designed for thebinary AO mixture, which can de-
scribe inhomogeneous mixtures with arbitrary size ratio,
been developed@33#. This DFT has been applied to th
present problem of adsorption at a hard wall. Results will
presented elsewhere.
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