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Inhomogeneous model colloid-polymer mixtures: Adsorption at a hard wall
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We study the equilibrium properties of inhomogeneous model colloid-polymer mixtures. By integrating out
the degrees of freedom of the ideal polymer coils, we derive a formal expression for the effective one-
component Hamiltonian of théhard spherecolloids that is valid for arbitrary external potentials acting on
both the colloids and the polymers. We show how one can recover information about the distribution of
polymer in the mixture given knowledge of the colloid correlation functions calculated using the effective
one-component Hamiltonian. This result is then used to furnish the connection between the free-volume and
perturbation theory approaches to determining the bulk phase equilibria. For the special case of a planar hard
wall the effective Hamiltonian takes an explicit form, consisting of zero-, one-, and two-body, but no higher-
body, contributions provided the size ratip=o,/0.<0.1547, wheres. and o, denote the diameters of
colloid and polymer respectively. We employ a simple density functional theory to calculate colloid density
profiles from this effective Hamiltonian fay=0.1. The resulting profiles are found to agree well with those
from Monte Carlo simulations for the same Hamiltonian. Adding very small amounts of polymer gives rise to
strong depletion effects at the hard wall which lead to pronounced enhancement of the colloid density profile
(close to the wajl over what is found for hard spheres at a hard wall.

DOI: 10.1103/PhysReVvE.63.041405 PACS nuni®er82.70.Dd, 61.20.Gy, 68.43.Mn

[. INTRODUCTION constitutes a very asymmetric, nonadditive system, is prohib-
ited by slow equilibration, since huge numbers of polymer
The addition of nhonadsorbing polymers to a colloidal sus-molecules are required per colloid particle at state points of
pension gives rise to an attractive interaction between thenterest. In this paper, we show that the integrating out pro-
colloidal particles. The physical mechanism for this phenom-cedure can be carried through for an inhomogeneous colloid-
enon is the depletion effect whereby an effective attractivgpolymer mixture, subject to external potentials that break
interaction is induced between the colloids due to the exclutranslational invariance. The presence of external potentials
sion of polymer from a depletion zone between these; thgives rise to terms in the effective Hamiltonian representing
range of the interaction is set by the diameter of the polymeadditional depletion effects, which have important conse-
coils and the strength of the attraction determined by thejuences for the application of effective Hamiltonians to in-
chemical potential of the polymer reservi]. A popular homogeneous problems, in particular, to the study of adsorp-
simple model of the binary colloid-polymer mixture treats tion, confined fluids, and fluid interfaces. For highly
the colloids as hard spheres, with diametgr and the poly- asymmetric mixtures, with size ratigQ=o,/0.<0.1547,
mers as ideal interpenetrating coils as regards their mutualear a planar hard wall the effective Hamiltonian reduces to
interactions but which are excluded by a center of mass disa particularly simple form consisting of zero-, one-, and two-
tance @+ o,,)/2 from the colloidg1,2]. It was shown pre-  body contributions but no higher-body terms. It is identical
viously [3] that, for such a homogeneous colloid-polymerto the Hamiltonian derived for the bulk syst¢B] apart from
mixture, explicitly integrating out the degrees of freedom ofan additional, attractive one-body term arising from deple-
the polymer gives rise to an effective Hamiltonian for thetion of polymer at the hard wall. We employ this effective
colloids consisting of zero-, one-, two-, and higher-bodyHamiltonian in an approximate density functional treatment
terms. Use of this effective Hamiltonian has provided much(DFT) and in a Monte Carlo simulation study of the density
insight into the phase equilibr[8-5] and structur¢3,6,7] in profile of colloids at a hard wall in mixtures with size ratio
bulk colloid-polymer mixtures. Surprisingly little attention g=0.1. To the best of our knowledge this is the first inves-
has been paid tinhomogeneousolloid-polymer mixtures tigation of the effects of depletion on colloid adsorption in
where the average density profiles of both species are spauch a model mixture.
tially varying. Such situations arise in adsorption at a solid Once the degrees of freedom of the polymer coils have
substrate, in mixtures confined in narrow pores, at the planaseen integrated out, it might seem as though information
interface between two coexistir{golloid-rich and polymer- about the distribution of polymer has been lost. However,
rich) fluid phase48-10], and in colloidal crystals. In these given knowledge of the colloid correlation functions ob-
situations it is not evident that the mapping from an inhomo-tained from the effective Hamiltonian, a formally exact ex-
geneous binary mixture to an inhomogeneous effective ongaression for the density profile of the polymers can be de-
component fluidof colloids) is tractable, i.e., will lead to an rived. This can be usefully employed for the calculation of
effective Hamiltonian that is sufficiently simple to employ in both homogeneoug&he polymer concentration in the bulk
simulations or tackle by standard liquid state theories. Recalinixture) and inhomogeneou@nterfacia) profiles.
that direct simulation of the model binary mixture, which  The paper is organized as follows. In Sec. Il we describe
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the model and show how the polymer degrees of freedons=|r;—r;|. The Hamiltonian thus consists @fivial) kinetic
can be integrated out to yield an effective Hamiltonian in theenergy contributions and a sum of interaction teris
presence of arbitrary external potentials. We then specialize-H.+H¢,+H,, where

to the case where the external potentials represent a hard wall

and show that explicit expressions can be derived for the Ne

various terms in the Hamiltonian. In Sec. 1ll we show how it Hee= > dec(Ri)),

is possible to recover information about the distribution of =
the polymer and use the formalism to furnish the connection

between the free-volumd5] and perturbation/integral- H
equation theorie$3,4] of the free-volume fraction and the P
phase equilibria, which has hitherto been lacking. Section

IV A discusses sum rules for the colloid and polymer profiles

at contact with a hard wall; these are generalizations of well- Hpp= 2, ¢pp(rij)=0.
known sum rules for simpl€éatomig fluids to the present :
effective Hamiltonian. Section IV B describes the results of . . : .
our DFT calculations and simulation studies. We find thatFOHOW'ng Ref. [3] we vyork n a semrgrgnd-canomcal,
the two approaches lead to very similar colloid density pro-(Nc:Zp ,V,T)lsensemble in which the fugacity of the poly-
files. Adding only small amounts of polyméto the reser- Mers.zp=A,~exp(Buy), is fixed, u, denotes the chemical
voir) leads to dramatic changes in the colloid profile, espePotential of the reservoir of polymer, ait=1/kgT. Here, in
cially close to the hard wall where depletion increases théddition to the pairwise interactions we add two, in general
contact value to many times its value in the absence of p0|yd|fferent, external fields which couple independently to the
mer, i.e., the value appropriate to a pure hard sphere fluid &°lloid and polymer degrees of freedom:

a hard wall. We conclude in Sec. V with a summary and

pp

Np

; bep(IRi—T]), )

Il
_an

=z
°

i\-

N N
discussion of the possible relevance of our results for adsorp- ot O ex ot O ex
tion phenomena in real colloidal systems. Ve _Ei R,V _Ei opry). ©)
Il. THE EFFECTIVE HAMILTONIAN FOR AN The quantity of interest is the Helmholtz free energy
INHOMOGENEOUS COLLOID-POLYMER MIXTURE F(N¢,V,zp), which in the semi-grand-canonical ensemble is
. . . iven b

We consider an extreme nonadditive binary hard spherg y
mixture consisting ofN. hard spheres, representing colloid, o Np
_ande interpenetrable, noninteracting particle_s, repre_senting exf — BF]= E —pwf drNp
ideal polymer in a volum& at temperaturd. This provides Np=0 Np!NCIA ¢
a reasonable model of a colloid-polymer mixture as the in- ot et
teraction between sterically stabilized colloidal particles can Xexd —B(HeetHept VI VD], (4)

be made close to that of hard spheres, and dilute solutions of

polymer in a# solvent are very weakly interacting. We im- WhereA , is the thermal de Broglie wavelength of species
plicitly assume that any solvent molecules that are present ignd we have used the fact tHaf,=0. In order to integrate

a real suspension can be treated as an inert continuum, af#t the degrees of freedom of the polymer coils, this expres-
thus have no effect on bulk or interfacial properties. Thesion must first be rewritten in a form that resembles the
colloids interact via the hard sphere potential with a diameteHelmholtz free energy of a one-component system of col-
o. and the polymer particles are excluded from the colloiddoids interacting via an effective Hamiltoniad®'=H .+

to a center of mass distance ef{+ o,,)/2, where the diam- +V§’“. The effective potentiaf) describes how the interac-
etero,= 2R, with R, the radius of gyration of the polymer tions between the colloids are modified by th_e presence of
coils. This simple model of an idealized colloid-polymer the polymer and represents the grand potential of the ideal
mixture is often called the Asakura-Oosaws0O) model[1]  polymer coils in the presence of both the applied external
although it was first defined explicitly by Vip]. It is speci- ~ field VSXt and the external field of a fixed configurationd§

fied by the pair potentials colloids, i.e., the patrtitiion function foN. colloids is
bec(Rij) |o otherwise, 1
. ZWJdR”°exr{—ﬁ<Hcc+ﬂ+V§X‘>], ®)
SenlIRi-1iD={ for [Ri—rj|<z(oct o) e
el 0 otherwise, where
¢pp(rij):0! (1) . ZNp
o p N ext
_ — P — + .
whereR andr denote colloid and polymer center of mass exil — ALl N%O Np! J drrexi = AHep Vp .
coordinates, respectively, withR;;=|R;—R;| and r; ©
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It is clear that, in general, the effective potential where ejsexq—ﬁugﬂ(rj)] is the Boltzmann factor of the
Q=0Q{RNe}) is still many body in character, because thepolymer external potential. Although this procedure is simi-
free volume available to the polymer coils, on which it de-lar in spirit to a standard virial expansion, it is not a density
pends, is different for each configuratigRRNc} of the N, expansion because all terms are linear in the fugacity of the
colloids. The essential simplification provided by this modelpolymer as a result of the exponentiation in Eg). Note that

is that, because the polymer coils are noninteracting, botfor an ideal polymee,= 8P, = p,(z,), whereP|, andp;, are

Hcp and V5 appear in Eq(6) as externalone-body fields. ~ the pressure and density of t.f')\e polymer reservoir, respec-
I the polymers were allowed to interact, as is the case for dively. Equation(8) can be written in diagrammatic terms
binary hard sphere mixture, then the Boltzmann factor would11] as

contain an additional termd,,, which would complicate the & &

analysis considerably—see below. As bbthy, andVgap- —F2 = ¢+ O- + + + -y

pear as external fields, the right hand side of &j.can be )

expressed as an exponential: ) )
where(i) each black circle represents a factorzgf and an

f dr integral over volume V weighted with a factor
! exp:—,vi,Xt], and (ii) each open circle represents fithond
Ng and a sum over the colloid coordinates. If the polymers were
< ex ,8( 2 den(IR—11) allowed to interact then this expansion would immediately
= e become much more complicated as it would also involve
N polymer-polymer Mayer bonds. A full diagrammatic expan-
P sion of () for a homogeneousnixture with arbitrary(pair-
))” wise) interactions can be found in Rdfl2] where the for-
malism is applied in the context of binary hard sphere
Ne mixtures. Each term in the effective potentialcan then be
=ex;{ zpf dr; ex;{ —,8( > beo(IRi—1j]) classified according to the number0,1,2 . .. N, of col-
=1 loids that interact simultaneously with the sea of ideal poly-

] mer:
. (7) Ne
BO= go BQ,. (10)

ex — Q)= >

N
zP
_P

I
Np=0 Np!

+vgxt(rj))

In order to evaluate this expression we expand the integral in_ _ )
terms of the Mayer function of the colloid-polymer interac- First, we review thee):( evaluation df2 for a homogeneous
tion potential, f;;=f(|R;—r;|)=exd— B (|Ri—rj[)]-1. systelefor whichv g t(rij)zo, Ii)e|i<’ g=1. It follows tghat
For a hard sphere interactidiy is simply a step function, —BQ¢ =2,V —and  —pQ"=—zN.m(oc+0p)°/6
thus allowing a geometrical interpretation to be given to the= —zpnc(1+q)3V, Wherencz(w/6)a§NC/V is the colloid
resulting integrals. Performing the cluster expansion yields packing fraction andj=o,/o, is the size rati¢3]. For the
N¢ homogeneous system the one-body tddm is a constant,
_Bgzzpj dr,-e,-H (1+f;) independent of the colloid coordinates; however, as we shall
i=1 see, this is not generally the case, and for inhomogeneous
systemd), acquires a spatial dependence determined by the

NC
=sz’ driej+ >, pr drifje; external potential. The integral required forBQ5"% is sim-
i=1 ply the convolution of two excluded volume spheres, given
Nq by the volume of a lens shaped region, multiplied &y
+3 2| dryfyfge e 8  Thus we find20"=3_;dao(R;;) Wheregao(R) is the fa-
i<k miliar Asakura-Oosawa pair potential, given by
|
™ o, (1 1 3R + R <R<o.+
— =0,z - y g, (o o
Boao(R)={ 6 PP ¢ 2(1+q)oe  2(1+0)%0; ¢ ¢ P (11)

0, R>(octoy).

It should be noted that E@8) for () admits any configu- considerations also apply to all higher-body terms. One of
ration of the colloids, since it contains no information aboutthe most attractive features of the present model is that geo-
Hcc or V&X', However, because all physical properties comemetrical arguments can be used to show that when the size
from the substitution of Eq8) into Eq.(5), unphysical con- ratio q<2#3—1=0.1547, all three- and higher-body contri-
figurations where colloids overlap are unimportant. Identicabutions to{) are identically zero, i.e),~,=0. This corre-
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FIG. 1. The shaded region contributes to the
one-body integral in Eq(8). When the position
of the center of the colloidR,=(1/2)(o.+207)
the entire exclusion sphere contributes, but for
R,<(1/2)(o¢+20p) overlap with the polymer
exclusion layer of thickness /2 at the wall in-
troduces a spatial dependence.

sponds to a situation where there can be no triple overlap of % 1 w, r<ly
excluded volume regions, even when three colloids are in 4R )= v&4(r,)= zm2p
simultaneous contact. As a result, there exists an exact map- 0, R=to., ' 0, r,=30p.
ping [3,7] between the full two-component AO mixture and (12)

the effective one-component system of colloids interacting
via the effective bulk HamiltonianQ5"™+ Q51+ buk
+H¢c. In calculating thermodynamic quantities from the ef-  We now proceed to evaluate the integrals in 8j.0ne at
fective Hamiltonian one must be careful to take into account time. The zero-body term B is simply z,V, the same
the effects of the zero- and one-body terfd§™ and "%, as in bulk. The one-body ternsQ,, however, is now a
which are often neglected. As both of these terms are indefunction of thez component of the colloid center coordinate
pendent of colloid coordinatgR™<} they have no effect on R,. This dependence arises from the presence of the Boltz-
the equilibrium structure of the effective one-component sySmann factore; in the integrand, which for a hard wall inter-
tem. However, as these terms are lineaviandNc, respec-  action is simply a step function. The only contributionlg
tively, they do contribute to shifts in both the pressure and;omes from the shaded volume shown in Fig. 1. Thus for
chemical potential and provide substantial contributions t 1 _ (bulk 1
the total cpompressibilitypof the mixture, making this veryqql;i(g#zap)’. ©,=0, 7, whereas for R,<3(a

. 4 - . +20,) overlap with the polymer exclusion layer reduces the
different from the osmotic compressibility calculated directly h dpd | d find
from the effective Hamiltoniar}7]. Note that these terms shaded volume and we fin
have no effect on the phase equilibria of the mixtUi2].

If we now turn to the inhomogeneous situation where N

bothv & andv ®* are nonzero, Eq8) still provides an exact _ abuk, N pwal

exprescsion for the effective Hari(wiltoniar?; all that remains is (R =04 +i21 ¢ao (Rai), (13
to specifvaXt. For the purpose of illustration let us special-

ize to the simplest possible case where boftf and v3*

represent a planar hard wall located in the plane: where the one-body potential

1 1
gy = | 5 Pagal2A-DHIB+OA-HE-0) (@2 )~ 3@ 7] for fo<Ri<H(u+20y)
0 otherwise,
(14)

and wheré&Z=R,/o.. This is the familiar Asakura-Oosawa integral is given by the shaded volume shown in Fig. 2. In
depletion potential between a single colloid and a planar hardeneral, when a pair of colloids are close to the wall, the
wall. Note that¢"A”g' has ranger, and a similar shape to the two-body term in Eq(8) no longer yields the bulk Asakura-
AO pair potential¢,o; it constitutes an attractive potential Oosawa expression as there exists a region of triple overlap
well at the wall. The depletion of polymer at the hard wall between the colloid-colloid lens and the polymer exclusion
always produces an effective wall-colloid attraction. It is ex-layer [see Fig. 2a)], which does not contribute to the inte-
pected, therefore, that the colloids will be preferentially ad-gral. The two-body potential thus becomes a complicated
sorbed by a hard wall. Once again it is worth noting that thefunction of R; and R, and not simply a function of the
integral for(), permits any value oR, but substitution into  separation|R;—R,|. However, simple geometrical argu-
Eq. (5) eliminates unphysical configurations of colloid. If we ments can be used to show that fp0.25 all Q, for n
turn now to the two-body terrf,, the value of the required =2 are unaltered from their bulk forms in the presence of
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Jy2 -

(a) (b)

FIG. 2. The shaded region contributes to the two-body term in(8q.For larger size ratioga) the exclusion lens between colloids
overlaps with the polymer exclusion layer at the wall and the two-body potential becomes a complicated function. However, for size ratios
(< 0.25(b) this triple overlap cannot occur and so the bulk Asakura-Oosawa pair potential, given by the volume of the lens, remains valid
in the interfacial region.

the hard wall. Physically, this corresponds to a situatiorwhich we can tune the interactions in the system.zAss
where the exclusion layer at the wall and the colloid-colloidconstant throughout an inhomogeneous fluid, then so too is
exclusion lens cannot overlap, even when the colloids are ithe effective interaction between the colloids, regardless of
contact with the wall; see Fig.(B). Thus, forq<0.25, we the local polymer density. This serves to reinforce the fact
are left with an effective one-component Hamiltonian for athat the species that is integrated out is treated grand canoni-

fluid of colloids near a hard wall that has the form cally.
NC NC
Hef= Q8"+ Q8+ H_ + D v™(R,)+ 2 SA3(R,) Ill. OBTAINING THE POLYMER DISTRIBUTION FROM
: ! THE EFFECTIVE HAMILTONIAN
+ 2, ¢ao(Rij)+higher-body terms, (15 A. Inhomogeneous case
i<j

Using the effective Hamiltoniahl " derived in the previ-
pus section one may treat the colloids as an effective one-
component system with given interactions and subject to an
external field. Once the effective Hamiltonian has been
specified one is completely free to choose how to tackle the

tatistical mechanics of the effective one-component system.

hus, using a theory or a simulation of a one-component
éluid it is possible, in principle, to calculate any of the re-
quired equilibrium properties of the colloidal particles. How-
ever, it would seem that by adopting an effective Hamil-
tonian for the colloids all information about the distribution
external potentia‘i/ﬁ’“. Note that the polymer manifests itself 8];:: ehgféygneegnhiﬁez(?;géos&t thoenptzlé/ n;ﬁ:e(:ehgarﬁgs b(;f Ilrseiﬁg
in H*" solely through the depeno!ence@g“”‘, M, 638, the effective Hamiltonian, we have obtained information
and ¢xo on the polymer fugacityz,. Although we have apout the properties of the colloids and so, returning to the
taken the case of a planar h.ard wall as an example, there afiginal problem, in which both species are treated on an
many other external potentials for which the above procepqual footing, we should be in a better position to calculate
dure could be usefully employed. the properties of the polymer; half of the problem has al-

At this stage it is appropriate to consider the situation ofiaady been solved. In order to recover information about the

spontaneously generated inhomogeneities where the densifymer distribution we make use of the standard functional
profiles of colloid and polymer are spatially varying in the (gjation

absence of external fields. Examples are the planar interface

between demixed fluid phasgk3,10 and colloidal crystals i 5F[v§’“]

where the densities vary periodically. In such cadé&b re- pp (r)= 50%%r) (16)
duces to the effective Hamiltonian of the bulk system; there P

are no additional contributions associated with the inhomo-

geneity. At first sight this may seem somewhat surprising, awhich is easily derived by taking the functional derivative in
the distribution of polymer in a colloidal crystal, or in the EQ.(4) [14]. If, however, we use Ed5) in order to perform
region of the fluid-fluid interface, is clearly very different this functional derivative, where the partition functidrhas
from that in a bulk fluid, and one might imagine that differ- been written in one-component form, then it is clear that the
ent effective interactions might arise. However, because wenly quantity in this expression that is a functionalvgf® is
work exclusively with a reservoir of polymer, it is the fugac- the effective potentiaIQEQ({RNC};[US"‘]). Taking the
ity z,, of this reservoir that provides the only parameter byfunctional derivative yields

where the higher-body terms are identical to those in bulk. |
follows that forq<0.1547 all of the higher-body terms be-
come identically zero, and the effective Hamiltonidfi" is
exact when truncated after the pairwise term. Thus dor
below this critical size ratio there exists an exact mappin
between the partition function of thehomogeneoumixture
and that of the effective one-component system of colloid
described by the truncated®". This Hamiltonian differs
from that in bulk only by the addition of the one-body

depletion-induced attractive potenti@fa' and the hard wall
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1 1 59({RNC}-[UG>“]) say(q<0.1, the first two terms are expected to dominate and
Dpy—= = Ne 'LUp o e =T . _
pp () Z NIASNG ch dR 5051) the polymer profile is primarily determined by the exclusion
c e Up volume due to individual colloids. In these circumstances
X ex — B(Hge+ Q+ Vo] (17) one might employ simulation data fp{! in order to make
cc C "

an estimate of the polymer profile.
Now, as() consists of a sum of terms as given in Et0) the

polymer profile can also be written as a sum of terms, each B. Bulk case

of which is the average over the colloi¢# fixed fugacity of . o

the polymer reservoirof the functional derivative of a term N order to use Eq(19) for inhomogeneous situations,
in the effective potential: even forq<0.1547, one is required to calculate the two-

body correlation function?(R;,R,), which is not easy to
5Qo[v§“]> < 591[0,‘§Xt]> < 5QZ[USXt]> obtain either from simulation or from theory. However, in a
Zp %p

P(pl)(r):<W 5USXt(|’) 5v,'§x‘(r) bulk fluid this function reduces tpégcc(Rlz;pC,zp) where
g pc=N./V is the number density of the colloid and
T (18  Yec(Riz;pc,zp) is the colloid-colloid radial distribution
function. Equation(19) can be simplified to yield a useful
This expression is valid for any binary mixture with inte- €xpression for the actual densjy of polymer in the system
grable pairwise interactions. Moreover, it is easily generalat given fugacityz, of the polymer reservoir and gives, .
ized to an arbitrary number of species. We now specialize t8Y @ simple change of variable E(L9) reduces to the fol-
the Asakura-Oosawa model, where each term in the expafowing bulk expression:
sion of ) is given by a simple integral and the functional . 3
dependence is explicit. For this model the first term of Eq. PplPp=1—7(1+0Q)
(18) is given byz, exp{—ﬂvg"t(r)] and is independent of the 127203 (1+q
colloid distribution. The second term is slightly more com- - i f dr r?gec(r;pc.2p) Bbao(r) +--+,
plicated and incorporates information about the volume from 7p 1
which the polymers are excluded due to the presence of in- (20)
dividual colloids; it thus requires the equilibrium density
profile p{") of the colloids as input. It is important to note wherer =R, /o, and .= mpf.o3/6 is the packing fraction
; . : - c P pIp
that the required colloidal density profile must be calculatedyt the polymer in the reservoir. It is important to note that the
using the effective Hamiltonia(lL5). As might be expected, ayerages in Eq(20) are taken over all configurations of the
the two-body term involves the inhomogeneous pair correlag|ioids interacting via the bulk effective Hamiltonian. If the
tion functionp{® of a system of colloids interacting via the averages were taken using merely the “bare” hard sphere
effective Hamiltonian(15), and includes information about colloid-colloid interactione.., then the effect of the poly-
the effect of correlations between pairs of colloids on themer on the colloid distribution would be neglected:; it is this
(local) free volume available to the polymer. This procedurejnformation that is contained imeo(r;pe,z,) and in the
can be continued to generate an exact expression for th@gher-order correlation functions entering the higher-order
polymer profile, which, in general, requires knowledge of allterms in Eq(20). Forq<0.1547 the higher-order terms van-
n—body correlation functions of the colloids, calculated USingish and Eq(zo) provides an expncit and exact expression for
the effective Hamiltonian. The resulting expreSSion for thethe free-volume fractiomr of a Co”oid-po]ymer mixture, de-

polymer profile is given by fined by
pgl><r>=zpexri—/3v$“<r>](1+ f dR,f (1 —Ry)ptY (Ry) a(peiZp)=pplpp- (21)
. The theory requires as input the radial distribution function
tz f dRZJ dR3fep(r—=R2)Tep(r—Ra) of the colloids,g.., which can be readily obtained from
simulation or integral equation theories of the effective one-
Xp(CZ)(Rz,Rg)wL---). (19) component bulk system described by the pair potential
d’cc(R) + d’AO(R)-

. o , . ext Equation(20) for « provides the connection between the
This expression is valid for arbitrary external potentiafs free-volume[5] and perturbation/integral-equation theories

andv.", but is of limited use for large size ratios since it [3 4] of the bulk phase equilibria. In order to determine the
requires higher-order correlation functions of the C0||0id3,thermodynamic properties of a homogeneous system from
which are difficult to obtain from the effective Hamiltonian. know|edge of the bulk pair correlation functions three inde-
The usefulness of qug) becomes evident for smaller size pendent routes are available, name|y' the virial, compress-
ratios where geometrical arguments, similar to those usegbility, and internal energy equations. The quantity of interest
previously, show that fog<0.1547 all terms involving” in determining the phase equilibria is the Helmholtz free
for n=3 are identically zero and so the highest-order correenergyF which is conveniently obtained within the internal
lation function required ip{?). For very small size ratios, energy route by the integration
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BF(pe;h=1) BFy(pc;A=0) free-volume and standard perturbation/integral equation
v = v theories by substituting obtained from Eq(20) into Eq.
(24) and using the substitutioz[)—ﬂ\zp. This yields

1 ,(1 (=
+ §P§JO dhfo dRg(R;pc,N)Bo1(R). BF(pciN=1) _BFo(pc;\=0)

v %ll-7(1+0)°]
(22)
1 1 *
This is an exact expression for a one-component system in- + Epﬁf d)\f dR g.(R;pc N Bdao(R),
teracting solely via a pair potentia$, which is usually di- o Jo
vided into (repulsive reference andattractive perturbation (26)

parts, ¢= do+\p1, Where\ is a coupling constant that
switches on the effect of the perturbation as its value ini.e., we simply recover Eq(22) with an additional term
creases from 0 to [15]. Standard first-order perturbation —Zz,[1— 7.(1+ q)%] arising from the zero- and one-body
theory is obtained from Ed22) if the A dependence is ne- terms. Fy(p.;A=0) refers to the Helmholtz free energy of
glected andy(r;pc,\) is replaced byg(r;p.,A=0). Such the hard sphere fluid of densipy..
an approach is taken in several studies of phase equiliBfia So far all is exact and we have merely demonstrated that
with the Asakura-Oosawa pair potentiglo taken ase, utilizing Eq. (23) is equivalent to utilizing Eq(22), the stan-
and with ¢o= ¢.., the bare hard sphere potential betweendard coupling constant integration for the free energy of a
colloids. system described by a pairwise potential. In the approach of
An alternative approach to calculating the bulk phase beRef.[5] a(p.;zp) is replaced byx(p.;z,=0), i.e., the free-
havior is the free-volume approach of Lekkerkerletral. ~ volume fraction of a test polymer in the low-density limit,
[5], which appears to have a basis quite different from thafor which the scaled particle theofyl7] provides a good
given by Eq.(22). The free-volume theory for the free en- approximation. It is straightforward to show that the result-
ergy of a bulk colloid-polymer mixture can be derived by ing free-volume approximation fd¥ reduces to the standard

considering the identity first-order perturbation theory result,
BF(N¢,V,z,)=BF(N¢,V,z,=0) BF(pe;h=1) BFo(pc;:A=0)
= vzl ndl+ )’
2 [ 9BF(Ng,V,zp)
+f dzp| ————|, (23
0 z?Zp

1 ©
+§p§f dR gec(Ripe A =0) Bbao(R)
. . 0
which can be written as

(27
,BF(PCva) _ IBF(PCva:O) ., L
Y; - Y; 0 dzya(pe;zy), (24 with 0ee(R;pe ,A=0) the hard sphere radial distribution
function given by a scaled particle approximation. Clearly,
since from Eq.(4) the partial derivative is—(Ny), /z, tr)nore aﬁcu_rateEres(gI(';)s f@_'rrl:o_f fluid sltates V‘_/0U|d|be obtainedh
_ . - y employing Eq.(20) with integral equation closures suc
a(pc,?p)v, where (Np)., is the average number of l\n "o re ¢ vevick that are known to yigld(R; pe,\) in
polymers in the N, V,zp) rensembl_e and we have used EQ. gycellent agreement with simulati¢@]. Note that, although
(_21) an_d the fact that,= p,, for_an ideal polymer. The par- o, q<0.1547 « is dominated by the term -1 7.(1+q)°
fual Qerlvatlve can also be obtained from E¢$.and(8) and {5 g (physica) values of 7. and one might expect the
is given by free-volume approximatio27) to be accurate, it is thde-
( 9BF (NC,V,Zp)) rivativesof « with respect toy. that determine phase coex-

istence. That is why the free-volume approximation and per-
turbation theory yield metastable fluid-fluid coexistence
curves at unrealistically highy. for g=0.1[3]. If one deter-

. (25 mines the free energy from Eq26), using the Percus-

9z,

_ Tre{exid — BHEM dr T (14 F;))}

Treexy — BH®"] Yevick approximation forg..(R;p.,\), the resulting fluid-
) ) N ~ fluid coexistence curve is closer to that from simulafit6.
where Tg is short for the integraf dR"™ over the coordi- It is for larger size ratios, where the pair potential descrip-

nates of the colloidal particles. Given the geometrical inter+jgn, is no longer exact, that the free-volume approximation is
pretation of the Mayer functiot; for the colloid-polymer ¢ greater interest. Using the scaled particle expreskigh

interaction, the right hand side of E@5) can be interpreted o 4, which is central to the free-volume approach, consti-
as the average free volume available to the polymer at fixeg|;tes an approximate resummation of the full expan&2m.

fugacity of the polymer reservoifViee), =aV. If we focus  Thus the approximation captures some of the effects of
first on size ratiosq<<0.1547, where use of the effective three- and higher-body effective interactions, which are
Hamiltonian truncated at the Asakura-Oosawa pair potentigknown to be important at larger size ratios. Precisely which
term is exact, we can establish the connection between theffects are captured and which are not and how to improve

041405-7



J. M. BRADER. M. DIJKSTRA, AND R. EVANS PHYSICAL REVIEW B3 041405

systematically upon the basic approximation that set$ocal density functional treatments of the inhomogeneous
a(pc:zp)=a(pc;2,=0) is not obvious. fluid but is not obeyed by the standard closure approxima-
An important feature of our approach is that it provides ations to the wall-particle Ornstein-Zernike equat{ds]. For
means of obtaining the polymer densﬁﬁ)(r) in the pres- the case of a binary mixture near a hard wall the sum rule
ence of acrystalline array of colloids. Equatiori19), trun-  generalizes t& ,_; ,p,,,= 8P, i.e., the sum of the contact
cated at the two-body term and WiﬂEXtEO, should remain densities is proportional to théotal) pressure of the bulk
valid for a bulk crystal providedj<0.1547. Given an ap- Mixture. Rickayzerj19] has shown that it is possible to de-
proximation for p? in the crystal one can determine the fineé a normal pressure, for each species such thatp,,,
polymer density from knowledge of th@eriodid colloid =pBP,. EachP, is given by a bulk fluid virial-like equation.

densitypgl)(R). This result incorporates much more infor- However,P, cannot be expressed in terms of direct correla-

mation about the distribution of colloid than does the free-tion functions and is therefore not amenable to calculation

volume formula wherex is assumed to depend only on the Within DFT. . . .
(constant average colloid density,, i.e., the same formula If we treat our AO m|xFL.|re asa blna'ry fluid it follows that
is used for the solid and fluid phasg5]. Formally we can the sum of contact densities must satisfy

write Eq. (19) as pwct pwp=BP (29

1 * .
pp (N=25(Na(r;zp), @8 With pue=pe(c/2) and pup=pp(ci/2). On the other
hand, if we make the mapping to an effective one-component
fluid of colloids and consider the casge<0.25, where inte-
rating out the polymer at the hard wall yields the additional

where  zp(r)=2z,exd—pvg(r)] and  a(rizy)
=— 5,8F[v§“]/5zg(r) depends on the average spatial distri-
bution of the colloids. The free energy can be obtained by, . o .4 depletion potential14) but no other inhomoge-

mtezgrat:on and tr)e final te!i“ in Ed23) is replaced. by neous contribution, we can integrate the equation of hydro-
—[pdz,fdr a(r;zy)exd —Bvg (r)]. For the bulk colloidal statics[18] to obtain
crystal, where vS'=0, Eq. (28) reduces to p{’(r)

r . . wall

=ppa(r;zp) anda(r;z,) can be interpreted as the spatially % dopo(2)

varying free-volume fraction of polymer in the crystal. Note Pwc— B U+/2d2pc(z) dz =BPn(*), (30)
that Eq.(19) implies that ifp{*)(r) is periodic then so is the ¢

one-body polymer DfOf"@f)l)(r)- where Py (=) is the normal component of the pressure far

We conclude this section by remarking that an equivalentrom the wall. Note that the integrand in E@O) is zero for
procedure can be developed for additive binary hard spherg= (¢ + 20p)/2—see Eq.(14). It remains to identify
mixtures. However, in this case the depletion pair potentiap (). This quantity should be identified with the virial
and the higher-body potentials are not known explicitly sopressure of the bulk one-component fluid which, in turn, cor-
that each term in the effective Hamiltonian is known only responds to the osmotic pressiiép.;z,). Thus,
approximately{12]. Moreover, truncation at the pair poten-
tial term is no longer exact for any size ratio since interac- A
tions between the small spher@sonvanishing small-small PN(m):H(Pc?Zp)E_(W) ' 3D
Mayer functionn can mediate many-body effective colloid Ne Zp
interactions at all values af. Thus, in principle, one should ,
always employ the fulln-body expansion. In practice, for WNere exp—pAJ=Trcexg —BW] with
small size ratiogy=0.1, « is given rather accurately by the
expansion truncated after the zero-and one-body terms andVV(Nc,zp;{RNc})zE [bec(Rij) + dao(Rij) 1+ > Q,,
for q=<0.2 the main features of the bulk phase behavior are i< n>2
well described by an effective Hamiltonian that incorporates (32)

only the pair potential contributiof2].
y pairp 2] i.e., A(pc;zp) is the Helmholtz free energy of the one-

component system with an interaction Hamiltonian consist-
ing of two- and higher-body interactiofg]. The total free

A. Sum rules for contact densities energy F=A— PL(zp)[l— 7(1+9)%]V so that the total
pressure is the sum of the osmotic pressure and that of the
olymer reservoir:

IV. THE MIXTURE NEAR A HARD WALL

In this section we specialize to the colloid-polym&O)
mixture near a planar hard wall described by the externa®
potentials(12) and consider the density profilgs(z) and _ ) r
pp(2). Henceforward, for ease of notation, we replace the P=11(pcizp) + Pp(Zp)- 33
colloid z coordinateR, by z It is well known that for any Equations(29) and(30) can be combined using Eq&1) and
one-component fluid near a hard wall the contact densjty (33) to yield
satisfies the sum rule,,= 8P, whereP is the pressure of the
bulk (reservoij fluid far from the wall. This sum rule pro-
vides a useful test for the reliability of theories and for the Pwp— p;J: —ﬁf
accuracy of simulations. For example, it is obeyed by non- I

@ deag (2)
+/2dZPc(Z) dz (39
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which is a sum rule giving the polymer contact density in 0.5 . .
terms of an integral of the colloid profile over the range of

the wall-colloid depletion potential. This result is, of course, q=0.1 @)
specific to the AO model in the reginge<0.25. In practice ) 1
its usefulness for simulations will be restricted @
<0.1547 since only for these size ratios is the mapping to a
pair potential Hamiltonian exact. Equatid80) should be r
satisfied by the colloid profiles calculated from simulation or Tp
from a nonlocal DFT for the effective one-component sys-
tem, providedq<0.1547. We shall use it to examine the
accuracy of our numerical results presented below.

B. Colloid density profiles from DFT and simulation

In order to calculate the colloid profile.(z) we require a
DFT for a one-component fluid in which the fluid-fluid pair
potential ¢..(R) + ¢ a0(R) exhibits a deep, short ranged at-
tractive well (for small g), outside the hard core. Such po-
tentials induce much stronger pair correlations at the same 05 : :
density than those with longer ranged attraction, say a
Lennard-Jones fluid. In particular the “stickiness” leads to q=0.1 )
very high values ofy. at contactR=o_ . At present there 04 - 1
is no reliable procedure for incorporating such strong
attraction-induced correlation effects into DFT and we have
chosen to employ the crudest mean-field treatment of attrac
tive forces. The(grand potentigl functional that we mini- M,
mize is a standard or&0]:

0.75

Ol pcl=Fud pel+ 3 f def dR2pc(R1)pc(R2) dar R12)

+ f dR[ u.— V(R)1pc(R), (35 «.S+S

0.75

where u. is the chemical potential of the colloids and
V(R)=v¥(2) + ¢23\(2) is the effective wall potential ap-
propriate to the hard wall. We restrict consideration to fluid- FIG. 3. The simulation phase diagram for a system of colloids
like states(no spontaneous crystalline orderingo that interacting via the effective one-component Hamiltonian, i.e., the
p(R)=pc(2). Fudpc] is the intrinsic free energy func- Asakura-Oosawa pair potentiall) for a size ratiog=oy/o
tional of the hard sphere fluid for which we use the funda-=0-1[3]. In (@ 7 is the colloid packing fraction andy, is the
mental measures theory of Rosenfdlil]. The latter is Packing fraction of ideal polymer in the reservoir.(ln) we plot the
known to be accurate for a wide variety of highly inhomo- Phase diagram in terms af, and »,, the packing fraction of ideal
geneous situatiori®0,21. A mean-field treatment leaves ar- Polymer in the actual mixture given by the approximatigg/ »,
bitrary the specification of the attractive pair potential =1~ 7c(1+)". F and S denote the stable fluid and solifcc)

A L phases whilé-+ S, F+F, andS+ S denote, respectively, the stable
(ﬁaté(gaégii'gﬁsﬂ\;veehs‘g? core. In order to mimic some effectsg, .\’ i ‘the metastable fluid-fluid, and the metastable solid-solid

coexistence region.

bao(R),  R>0e (36) We chose to study AO mixtures witi=0.1 since this is the
dao(oe), O<Rso.. only case, withg<0.1547, for which the bulk phase diagram
has been determined fully by simulatig8]. The phase dia-

Such a choice yields a reasonable bulk free energy densiyram is shown here in Fig. 3 and coexistence data is given in
and we checked that other choices, e.g., setilggR)=0  Table I. The fluid-fluid transition is strongly metastable with
for 0O<R< o, do not lead to dramatically different colloid respect to a very broad, i, fluid-solid coexistence for this
profiles at the hard wall. size ratio. We deliberately avoid the bulk fluid-solid transi-

The  Euler-Lagrange  equation  obtained  fromtion by restricting calculations t%g 0.1, i.e., to small poly-
Q[ pcll 6pc(z) =0 was solved by Picard iteration for given mer concentrations.

ba R)=

bulk colloid density and given polymer fugacig,. We For comparison, we have also performed Monte Carlo
present results for state points specified by the bulk packingimulations of the effective one-component system in which
fractions .= mp() oa/6 and 7= mpjoa/6 with p=z,.  the colloids interact with a fluid-fluid pair potentig,.(R)
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TABLE I. The coexisting densitieexpressed in terms of pack- 25 . . .
ing fractions of colloid ;) and ideal polymer 4,)] at the stable
fluid-solid, metastable fluid-fluid, and weakly metastable solid-solid (a)
transitions for a bulk colloid-polymer mixture with size ratép 2 E
=0.1 and varying reservoir polymer packing fraction;{;as deter- i
mined by Monte Carlo simulatiof8]. The polymer packingsy, in
the actual mixture were calculated from the formutes 7,/ 7, s 181 «i |
=1-7(1+09)° po, }%
Fluid-solid " ]
Mo 7. (fluid) 7, (fluid) ¢ (solid) 7, (solid)
000  0.494 0.000 0.545 0.0000 osT 1
0.02 0.492 0.007 0.560 0.0051
0.04 0.491 0.014 0.569 0.0097 0 . .
0.06 0.486 0.021 0.587 0.0131 0 ! e 8 4
0.08 0.480 0.029 0.688 0.0067 ¢
0.10 0.469 0.038 0.696 0.0074
0.12 0.453 0.048 0.702 0.0079
0.15 0.345 0.081 0.709 0.0084 6 i
0.17 0.212 0.122 0.714 0.0084
0.20 0.029 0.192 0.718 0.0089
0.22 0.008 0.218 0.720 0.0092
0.30 6.E-4 0.300 0.721 0.0121 s 4r 1
0.34 7.€-5 0.340 0.722 0.0133 PG,
Solid-solid
7 nc (solid 1) 7, (solid )  #. (solid 2 7, (solid 2
0.08 0.577 0.0186 0.677 0.0079 2
0.10 0.563 0.0251 0.693 0.0078
0.12 0.564 0.0299 0.697 0.0087
Fluid-fluid 0
7, e (fluid1)  py (fluid 1) 75 (fluid 2) 7, (fluid 2) 0 4
0.29 0.027 0.2796 0.461 0.1121
0.30 0.015 0.2940 0.474 0.1107 16
0.34 0.004 0.3382 0.482 0.1219
+¢ao(R) and an effective wall potentiaV/(R)=0v(2) 2y
+¢%¥l(z). In order to investigate the adsorption properties
of the fluid, it is important to study the fluid in contact with
asinglewall. Here we use a simulation method in which the PS. st .
planar hard wall is located &=0 and a self-consistently
determined density () is imposed far from the hard wall,
using a penalty function that suppresses large deviations
from p.(°) and, hence, ensures a flat density profile. More
details on this simulation method are given in REZ2].
Simulations are performed using 1920 particles in a box of e
lateral dimensionsL,/o.=8.8606, L,/0.=9.5919, and 05 ] 2 3 4
L,/0.,=30.44 or L,/0.,=40.15, for 5,=0.40 and 7. z/c,

=0.30, respectively. More than>610* Monte Carlo sweeps
were allowed for equilibration and the density profiles were FIG. 4. Colloid density profiles near a hard wall: the open
accumulated over a furthep&10® sweepgone sweep is one circles are the Monte Carlo results while the solid lines denote the
attempted move per partigle DFT results. In each case the bulk colloid packing fractign
The effects on the colloid profile of adding polymer are =0-3 and the size ratiq=0.1. The packing fraction of ideal poly-
very pronounced as is illustrated in Fig. 4 for=0.3. In the ~ Mer in the reservoir increases frd@ ;=0 (pure hard sphergso
absence of ponemL:O [see Fig. 4a)], the system re- (b) ,=0.05 a_nd(c) 7,=0.10. The msgts _show the_ results on an
duces to hard spheres at a hard wall for which the Rosenfel@Panded vertical scale. Note the rapid increase in contact value
functional performs very well. The results of DFT and the pe(0c/2) sy is increased.
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present simulation are almost indistinguishable. On adding a 6 ' . '
very small amount of polymerz;;,=0.05, the wall-induced
depletion leads to a much higher value of theduced con-
tact density,pwca§~6.41 as compared with 2.32 for hard
spheres at a hard wall. On the scale of Figp)4here is good al
agreement between theory and simulation. When the scale is
expanded(see insetthere are differences, which we shall pcca
return to below.

Figure 4c) displays the results fOf]L=0.l. Now the ef-
fect of depletion is even more pronounced and(tieeluced
contact density from DFT increases to 15.52. Once again the
overall agreement with simulation is good. Note that (fee
duced colloid density profiles decay rapidly from the very
high contact values to values of about unity over the range 0 . . .
0,=0.10 of the wall depletion potentiab"AVg”. This means 2/G
that the amount adsorbed in the contact “layer” remains a
fraction of a colloid monolayer. The colloid is responding
(essentially as an ideal gas in the deep wall depletion poten-

tial. Indeed, the large contact densities can be accounted 2

for qualitatively by the ideal gas resultp,.o> sl

=po(®) o exd — B (o) ] plus some small enhancement '

from packing effects. There is no evidence for any wall- 10 - 1+ ]
induced local crystallization at these polymer concentrations.

The colloid density at the first minimum of the profile is not pcsc3 05

substantially different from the bulk densipy(«). Figure 5 . . .

shows the corresponding results fpg=0.4. The bulk hard % 1 2 3 4

ing of hard spheres at the hard wall is more pronourised
Fig. 5@)]. The Rosenfeld functional still provides an excel-

lent account of the density profile at this higher packing frac- w
0 1

tion. As polymer is added the variation in the profiles is

sphere fluid is closer to freezingy{;=0.494) and the order- T & |

o . . . 0 1 2 3 4
similar to that for the lower packing fraction of colloids. The /o,
contact densities become even higher for a giwgm DFT
giveSpWCo§~27.64 forr;[)=0.1. This implies that the pack- 30 , , ,
ing effects are much more significant a{=0.4. The level 15

of agreement with simulation is similar to that fer=0.3

and the DFT appears to capture all the main features in the
shape of the colloid profiles. These are nontrivial as can be
seen from the insets to Figs. 4 and 5. On increas}{;gat

fixed 7. the minima inp.(z) shift to smallerz and the os- 3 05
cillations appear to decay more rapidly. Whether these fea- P9 15 |-
tures can be accounted for by the general theory of
asymptotic decay of density profil¢23] remains to be as- 10 0 1 2 3 4 |
certained. The amount adsorbed in the contact layer remains
quite small foryp.=0.4 and, as for.=0.3, at the first mini-

25 -

20 -

mum in the density profile the colloid density remains sub- 5r |
stantial, typically about half the bulk value. We checked the

numerics of the DFT calculations by comparing the contact % ; o 3 4
valuesp,,. with those resulting from Eq30), with the os- Z/c

motic pressurdl obtained from the bulk free energy given
by the DFT, Eq.(35). The results agree to better than 0.15% FIG. 5. Colloid density profiles near a hard wall: the open
in all cases. circles are the Monte Carlo results while the solid lines denote the
Performing Monte Carlo simulations for the strongly at- DFT results. In each case the bulk colloid packing fractign
tractive and very short ranged potentials that arise or =0-4 and the size ratiq=0.1. The packing fraction of ideal poly-
=0.1 and7,=0.1 is not straightforward. In Monte Carlo Mer in the reservoir increases fra@ 7p=0 (pure hard spher¢o
simulations, we select a particle at random and give it 42 7p=0.05 and(c) 7,=0.10. The insets show the results on an
random displacement. Usually the size of the displacement igxpanded vertical scale. Note the rapid increase in contact value

+ M
chosen so that about 50% of the attempted moves are afe(7c/2) @S, is increased.
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cepted. However, in an inhomogeneous system the accepigher polymer packing or whether one must approach very
tance probability is not uniform throughout the system. Forclose to the bulk phase boundary in order to observe such a
instance, in a system with a strongly attractive and very shofphenomenon remains to be investigated thoroughly. One
ranged wall-particle potential, as in our case, the acceptanagight certainly expect depletion effects to favor the devel-
probability is much lower close to the wall than in bulk. In gpment of crystalline layers prior to bulk crystallization. The
order to obtain good statistics close to the wall, we musinain issues aré) how close to the bulk transition must one
choose the size of the random displacements to be manye pefore the first adsorbed layer becomes crystallingiand
times smaller than in bulk, corresponding to a higher overall,q,, go subsequent crystalline layers develop at the hard
acceptance pr(r)lballaility. The Idrawback of such a hig? aCCeRyall-fluid interface asn[) is increasedfor a fixed ».) toward
tance rate is that long simulation runs are needed for 9008 value at bulk fluid-solid coexistence? Various scenarios

statistical accuracy in the bulk. In the present simulations we e possible. There could be an infinite sequence of layering

have chosen the acceptance probability so that equally gog

statistics are obtained close to the wall as in bulk. This probf_[ransnmns culminating in complete wetting of the wall-fluid

ability is about 75%. If we increase the acceptance probabil"t€rface by a near close packed crystal. Alternatively, the
ity, i.e., make smaller displacements, we find that the valudtérface could remain partially wetted by crystal. We should
of the contact density increases and the width of the firsfecall that the adsorption c.haractens_tlc_s of pure hard spheres
peak of the colloid density profiles decreases—moving to@t & planar hard wall remain uncertain in the approach to the
ward the DFT results. However, simultaneously, the statisfreezing transition—this corresponds to increasipgalong
tics for the second peak and for bulk become very poorthe axis7,=0 in Fig. 3 toward the valug.=0.494 where
making difficult any fine comparison between theory andbulk freezing occurs. One still does not know whether the
simulation. hard wall-hard sphere fluid interface is completely wetted
by hard sphere crystaR4].
V. DISCUSSION Similar depletion phenomena should be found for additive
binary mixtures of hard spheres near a hard wall, provided
In this paper we have developed a formal procedure fothe size ratiog is small enough. DFT calculations foy,
integrating out the degrees of freedom of the polymer in an_q 3 and 0.4 with a similar range of small sphere packing
inhomogeneous model colloid polymer mixture defined byt actions based on the Rosenfeld functional for a binary mix-
Egs. (1) and (2), the Asakura-Oosawa model Hamiltonian. y, o \yith q=0.1 yield big spherdcolloid) density profiles
For highly asymmetric mixtures, with size raip<0.1547,  hat are very similar to those shown hd@s]. Once again
near a planar hard wall the resulting effective one-componenfere is no sign of crystallization at the wall for the state
Hamiltonian takes a particularly simple form, which IS y5ints that were investigated. Detailed comparisons of re-
readily amenable to simulation studies and to investigatio

by one-component DFT. Our procedure enables us 10 MaRy model will be presented elsewhere but we remark that
(exactly a difficult binary mixture problem to its more trac- o+ findings are different from those of Poon and Warren

table one-component counterpart. As an illustration of the{26]’ who developed an empirical approach for the calcula-
procedure we have considered the adsorption for a binarfoy of the onset of wall crystallization in additive binary
mixture with q=0.1 at a planar hard wall at two different 5.4 sphere mixtures. These authors find hard-wall-induced
values of the colloid packing fractiom.. In both cases, ¢ystallization at small sphere packing fractions that are far
adding small amounts of polymer gives rise to deep deplepgioy the bulk fluid-solid transition obtained in RéL2].

tion potentials at the wall, which yield, in turn, very high o, present results and those in REf5] show no sign of

valyes of the colloid dgnsity near contact..The simple DFT \yall-induced crystallization at state points where Heb]
which treats the attractive part of the effective colloid-colloid predicts such a transition. These observations are relevant to

pair potential in mean-field fashion, provides a good descrip'experiments. Several papefg7-29 report evidence for
tion of the main features of the colloid density profile. There,ii-induced crystallization well below the bulk fluid-solid
are discrepancies between DFT and simulation put these affase boundary in mixtures of hard-sphere-like colloids at a
not large. The DFT does account for the very high ContacE)Tlanar wall. There are also earlier observations of wall-
values that are observed in the simulations. It is important t¢,qced crystallization in colloid-polymer mixtur§80,31].
emphasize that for the range of polymer reservoir packingyo,y well the idealized model of the AO binary mixture near
fractions we consider, i.en, up to 0.1, the Gibbs adsorption 4 planar hard wall mimics the experimental situations re-
I'=[5dZ pc(2) —pc(°)] does not increase rapidly with in- mains to be ascertained but our present theoretical frame-
creasing 77[,. Although the colloid density is strongly en- work does allow us to investigate these problems—at least
hanced very close to the wall, i.e., within the narrow range offor systems with size ratig<<0.1547.

the wall depletion potential, this is insufficient to lead to  The analysis presented in Sec. Ill focused on a planar
pronounced increases In Moreover, the colloid density at hard wall. It is straightforward to generalize to a curved hard
the first minimum remains about half the bulk density sowall and it might be possible to develop the theory for struc-
there is no indication of wall-induced local crystallization up tured walls, i.e., patterned substrates. Recent experiments
to 77[)=O.1. We note that these state points are still well[32] have shown that a variety of low-dimensional colloidal
removed from the bulk fluid-solid phase boundésge Fig. fluid and solidlike phases can develop for colloid polymer
3). Whether wall-induced crystallization sets in at slightly mixtures adsorbed on periodically patterned templates. En-
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tropic depletion forces are responsible for the rich phase bametric mixtures. For mixtures witlq>0.1547, where inte-
havior. grating out yields many-body contributions to the effective
We conclude by returning to the situation of spontane-Hamiltonian, the mapping loses some of its appeal for cal-
ously generated inhomogeneity where the one-body densityulational purposes. An alternative DFT approach specifi-
profiles are spatially varying in the absence of external pocally designed for thebinary AO mixture, which can de-
tentials. As emphasized earlier, for such situations the effecscribe inhomogeneous mixtures with arbitrary size ratio, has
tive HamiltonianH®" reduces to that of the bulk system and peen developed33]. This DFT has been applied to the
for q<0.1547 H*"= 0" + Q"+ H o+ 3 jhao(Rij),  present problem of adsorption at a hard wall. Results will be
where 08"+ Q2" depend only ore,, the fugacity of the presented elsewhere.
reservoir. This implies that the properties of the interfaces
between coexisting phases at a given are determined
solely by the pair potentialp..(R) + ¢ao(R) evaluated at
that value ofz,. Thus one may calculate density profiles and
surface tension at the fluid-solid interfaces and at(theta- We thank R. Roth, R. van Roij, and M. Schmidt for
stable solid-solid and fluid-fluid interfaces that arise be- stimulating discussions and P. B. Warren for helpful corre-
tween the phases indicated in Fig. 3 using the pair potentiadpondence. This research was supported by the EPSRC un-
description. This illustrates further the usefulness of the mapder Grant No. GR/L89013. M. D. is grateful to FOM for
ping to an effective one-component system for highly asymsupport under stimulerings programma.
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